

Table	of	Contents
1.	 Introduction

1.	 EMC	Academic	Alliance
2.	 EMC	Proven	Professional	Certification

2.	 Chapter	1:	Introduction	to	Big	Data	Analytics
1.	 1.1	Big	Data	Overview
2.	 1.2	State	of	the	Practice	in	Analytics
3.	 1.3	Key	Roles	for	the	New	Big	Data	Ecosystem
4.	 1.4	Examples	of	Big	Data	Analytics
5.	 Summary
6.	 Exercises
7.	 Bibliography

3.	 Chapter	2:	Data	Analytics	Lifecycle
1.	 2.1	Data	Analytics	Lifecycle	Overview
2.	 2.2	Phase	1:	Discovery
3.	 2.3	Phase	2:	Data	Preparation
4.	 2.4	Phase	3:	Model	Planning
5.	 2.5	Phase	4:	Model	Building
6.	 2.6	Phase	5:	Communicate	Results
7.	 2.7	Phase	6:	Operationalize
8.	 2.8	Case	Study:	Global	Innovation	Network	and	Analysis	(GINA)
9.	 Summary
10.	 Exercises
11.	 Bibliography

4.	 Chapter	3:	Review	of	Basic	Data	Analytic	Methods	Using	R
1.	 3.1	Introduction	to	R
2.	 3.2	Exploratory	Data	Analysis
3.	 3.3	Statistical	Methods	for	Evaluation
4.	 Summary
5.	 Exercises
6.	 Bibliography

5.	 Chapter	4:	Advanced	Analytical	Theory	and	Methods:	Clustering
1.	 4.1	Overview	of	Clustering
2.	 4.2	K-means
3.	 4.3	Additional	Algorithms
4.	 Summary
5.	 Exercises

6.	 Bibliography
6.	 Chapter	5:	Advanced	Analytical	Theory	and	Methods:	Association	Rules

1.	 5.1	Overview
2.	 5.2	Apriori	Algorithm
3.	 5.3	Evaluation	of	Candidate	Rules
4.	 5.4	Applications	of	Association	Rules
5.	 5.5	An	Example:	Transactions	in	a	Grocery	Store
6.	 5.6	Validation	and	Testing
7.	 5.7	Diagnostics
8.	 Summary
9.	 Exercises
10.	 Bibliography

7.	 Chapter	6:	Advanced	Analytical	Theory	and	Methods:	Regression
1.	 6.1	Linear	Regression
2.	 6.2	Logistic	Regression
3.	 6.3	Reasons	to	Choose	and	Cautions
4.	 6.4	Additional	Regression	Models
5.	 Summary
6.	 Exercises

8.	 Chapter	7:	Advanced	Analytical	Theory	and	Methods:	Classification
1.	 7.1	Decision	Trees
2.	 7.2	Naïve	Bayes
3.	 7.3	Diagnostics	of	Classifiers
4.	 7.4	Additional	Classification	Methods
5.	 Summary
6.	 Exercises
7.	 Bibliography

9.	 Chapter	8:	Advanced	Analytical	Theory	and	Methods:	Time	Series	Analysis
1.	 8.1	Overview	of	Time	Series	Analysis
2.	 8.2	ARIMA	Model
3.	 8.3	Additional	Methods
4.	 Summary
5.	 Exercises

10.	 Chapter	9:	Advanced	Analytical	Theory	and	Methods:	Text	Analysis
1.	 9.1	Text	Analysis	Steps
2.	 9.2	A	Text	Analysis	Example
3.	 9.3	Collecting	Raw	Text

4.	 9.4	Representing	Text
5.	 9.5	Term	Frequency—Inverse	Document	Frequency	(TFIDF)
6.	 9.6	Categorizing	Documents	by	Topics
7.	 9.7	Determining	Sentiments
8.	 9.8	Gaining	Insights
9.	 Summary
10.	 Exercises
11.	 Bibliography

11.	 Chapter	10:	Advanced	Analytics—Technology	and	Tools:	MapReduce	and	Hadoop
1.	 10.1	Analytics	for	Unstructured	Data
2.	 10.2	The	Hadoop	Ecosystem
3.	 10.3	NoSQL
4.	 Summary
5.	 Exercises
6.	 Bibliography

12.	 Chapter	11:	Advanced	Analytics—Technology	and	Tools:	In-Database	Analytics
1.	 11.1	SQL	Essentials
2.	 11.2	In-Database	Text	Analysis
3.	 11.3	Advanced	SQL
4.	 Summary
5.	 Exercises
6.	 Bibliography

13.	 Chapter	12:	The	Endgame,	or	Putting	It	All	Together
1.	 12.1	Communicating	and	Operationalizing	an	Analytics	Project
2.	 12.2	Creating	the	Final	Deliverables
3.	 12.3	Data	Visualization	Basics
4.	 Summary
5.	 Exercises
6.	 References	and	Further	Reading
7.	 Bibliography

14.	 End	User	License	Agreement

List	of	Illustrations
	
1.	 Figure	1.1
2.	 Figure	1.2
3.	 Figure	1.3
4.	 Figure	1.4
5.	 Figure	1.5
6.	 Figure	1.6
7.	 Figure	1.7
8.	 Figure	1.8
9.	 Figure	1.9
10.	 Figure	1.10
11.	 Figure	1.11
12.	 Figure	1.12
13.	 Figure	1.13
14.	 Figure	1.14
15.	 Figure	2.1
16.	 Figure	2.2
17.	 Figure	2.3
18.	 Figure	2.4
19.	 Figure	2.5
20.	 Figure	2.6
21.	 Figure	2.7
22.	 Figure	2.8
23.	 Figure	2.9
24.	 Figure	2.10
25.	 Figure	2.11
26.	 Figure	3.1
27.	 Figure	3.2
28.	 Figure	3.3
29.	 Figure	3.4
30.	 Figure	3.5
31.	 Figure	3.6
32.	 Figure	3.7

33.	 Figure	3.8
34.	 Figure	3.9
35.	 Figure	3.10
36.	 Figure	3.11
37.	 Figure	3.12
38.	 Figure	3.13
39.	 Figure	3.14
40.	 Figure	3.15
41.	 Figure	3.16
42.	 Figure	3.17
43.	 Figure	3.18
44.	 Figure	3.19
45.	 Figure	3.20
46.	 Figure	3.21
47.	 Figure	3.22
48.	 Figure	3.23
49.	 Figure	3.24
50.	 Figure	3.25
51.	 Figure	3.26
52.	 Figure	3.27
53.	 Figure	4.1
54.	 Figure	4.2
55.	 Figure	4.3
56.	 Figure	4.4
57.	 Figure	4.5
58.	 Figure	4.6
59.	 Figure	4.7
60.	 Figure	4.8
61.	 Figure	4.9
62.	 Figure	4.10
63.	 Figure	4.11
64.	 Figure	4.12
65.	 Figure	4.13
66.	 Figure	5.1

67.	 Figure	5.2
68.	 Figure	5.3
69.	 Figure	5.4
70.	 Figure	5.5
71.	 Figure	5.6
72.	 Figure	6.1
73.	 Figure	6.2
74.	 Figure	6.3
75.	 Figure	6.4
76.	 Figure	6.5
77.	 Figure	6.6
78.	 Figure	6.7
79.	 Figure	6.10
80.	 Figure	6.8
81.	 Figure	6.9
82.	 Figure	6.11
83.	 Figure	6.12
84.	 Figure	6.13
85.	 Figure	6.14
86.	 Figure	6.15
87.	 Figure	6.16
88.	 Figure	6.17
89.	 Figure	7.1
90.	 Figure	7.2
91.	 Figure	7.3
92.	 Figure	7.4
93.	 Figure	7.5
94.	 Figure	7.6
95.	 Figure	7.7
96.	 Figure	7.8
97.	 Figure	7.9
98.	 Figure	7.10
99.	 Figure	8.1
100.	 Figure	8.2

101.	 Figure	8.3
102.	 Figure	8.4
103.	 Figure	8.5
104.	 Figure	8.6
105.	 Figure	8.7
106.	 Figure	8.8
107.	 Figure	8.9
108.	 Figure	8.10
109.	 Figure	8.11
110.	 Figure	8.12
111.	 Figure	8.13
112.	 Figure	8.14
113.	 Figure	8.15
114.	 Figure	8.16
115.	 Figure	8.17
116.	 Figure	8.18
117.	 Figure	8.19
118.	 Figure	8.20
119.	 Figure	8.21
120.	 Figure	8.22
121.	 Figure	9.1
122.	 Figure	9.2
123.	 Figure	9.3
124.	 Figure	9.4
125.	 Figure	9.5
126.	 Figure	9.6
127.	 Figure	9.7
128.	 Figure	9.8
129.	 Figure	9.9
130.	 Figure	9.10
131.	 Figure	9.11
132.	 Figure	9.12
133.	 Figure	9.13
134.	 Figure	9.14

135.	 Figure	9.15
136.	 Figure	9.16
137.	 Figure	10.1
138.	 Figure	10.2
139.	 Figure	10.3
140.	 Figure	10.4
141.	 Figure	10.5
142.	 Figure	10.6
143.	 Figure	10.7
144.	 Figure	11.1
145.	 Figure	11.2
146.	 Figure	11.3
147.	 Figure	11.4
148.	 Figure	12.1
149.	 Figure	12.2
150.	 Figure	12.3
151.	 Figure	12.4
152.	 Figure	12.5
153.	 Figure	12.6
154.	 Figure	12.7
155.	 Figure	12.8
156.	 Figure	12.9
157.	 Figure	12.10
158.	 Figure	12.11
159.	 Figure	12.12
160.	 Figure	12.13
161.	 Figure	12.14
162.	 Figure	12.15
163.	 Figure	12.16
164.	 Figure	12.17
165.	 Figure	12.18
166.	 Figure	12.19
167.	 Figure	12.20
168.	 Figure	12.21

169.	 Figure	12.22
170.	 Figure	12.23
171.	 Figure	12.24
172.	 Figure	12.25
173.	 Figure	12.26
174.	 Figure	12.27
175.	 Figure	12.28
176.	 Figure	12.29
177.	 Figure	12.30
178.	 Figure	12.31
179.	 Figure	12.32
180.	 Figure	12.33
181.	 Figure	12.34
182.	 Figure	12.35

List	of	Tables
	
1.	 Table	1.1
2.	 Table	1.2
3.	 Table	2.1
4.	 Table	2.2
5.	 Table	2.3
6.	 Table	3.1
7.	 Table	3.2
8.	 Table	3.3
9.	 Table	3.4
10.	 Table	3.5
11.	 Table	3.6
12.	 Table	6.1
13.	 Table	7.1
14.	 Table	7.2
15.	 Table	7.3
16.	 Table	7.4
17.	 Table	7.5
18.	 Table	7.6
19.	 Table	7.7
20.	 Table	7.8
21.	 Table	8.1
22.	 Table	9.1
23.	 Table	9.2
24.	 Table	9.3
25.	 Table	9.4
26.	 Table	9.5
27.	 Table	9.6
28.	 Table	9.7
29.	 Table	10.1
30.	 Table	10.2
31.	 Table	11.1
32.	 Table	11.2

33.	 Table	11.3
34.	 Table	11.4
35.	 Table	12.1
36.	 Table	12.2
37.	 Table	12.3

Introduction
Big	Data	 is	creating	significant	new	opportunities	 for	organizations	 to	derive	new	value
and	 create	 competitive	 advantage	 from	 their	 most	 valuable	 asset:	 information.	 For
businesses,	 Big	 Data	 helps	 drive	 efficiency,	 quality,	 and	 personalized	 products	 and
services,	 producing	 improved	 levels	 of	 customer	 satisfaction	 and	 profit.	 For	 scientific
efforts,	 Big	 Data	 analytics	 enable	 new	 avenues	 of	 investigation	 with	 potentially	 richer
results	 and	deeper	 insights	 than	previously	available.	 In	many	cases,	Big	Data	 analytics
integrate	structured	and	unstructured	data	with	real-time	feeds	and	queries,	opening	new
paths	to	innovation	and	insight.

This	book	provides	a	practitioner’s	approach	to	some	of	the	key	techniques	and	tools	used
in	 Big	 Data	 analytics.	 Knowledge	 of	 these	 methods	 will	 help	 people	 become	 active
contributors	 to	 Big	 Data	 analytics	 projects.	 The	 book’s	 content	 is	 designed	 to	 assist
multiple	stakeholders:	business	and	data	analysts	looking	to	add	Big	Data	analytics	skills
to	their	portfolio;	database	professionals	and	managers	of	business	intelligence,	analytics,
or	 Big	 Data	 groups	 looking	 to	 enrich	 their	 analytic	 skills;	 and	 college	 graduates
investigating	data	science	as	a	career	field.

The	content	is	structured	in	twelve	chapters.	The	first	chapter	introduces	the	reader	to	the
domain	of	Big	Data,	the	drivers	for	advanced	analytics,	and	the	role	of	the	data	scientist.
The	 second	 chapter	 presents	 an	 analytic	 project	 lifecycle	 designed	 for	 the	 particular
characteristics	and	challenges	of	hypothesis-driven	analysis	with	Big	Data.

Chapter	3	examines	fundamental	statistical	techniques	in	the	context	of	the	open	source	R
analytic	software	environment.	This	chapter	also	highlights	the	importance	of	exploratory
data	 analysis	 via	 visualizations	 and	 reviews	 the	 key	 notions	 of	 hypothesis	 development
and	testing.

Chapters	4	through	9	discuss	a	range	of	advanced	analytical	methods,	including	clustering,
classification,	regression	analysis,	time	series	and	text	analysis.

Chapters	 10	 and	 11	 focus	 on	 specific	 technologies	 and	 tools	 that	 support	 advanced
analytics	with	Big	Data.	In	particular,	the	MapReduce	paradigm	and	its	instantiation	in	the
Hadoop	ecosystem,	as	well	as	advanced	topics	in	SQL	and	in-database	text	analytics	form
the	focus	of	these	chapters.

Chapter	 12	 provides	 guidance	 on	 operationalizing	 Big	 Data	 analytics	 projects.	 This
chapter	 focuses	 on	 creating	 the	 final	 deliverables,	 converting	 an	 analytics	 project	 to	 an
ongoing	 asset	 of	 an	 organization’s	 operation,	 and	 creating	 clear,	 useful	 visual	 outputs
based	on	the	data.

EMC	Academic	Alliance
University	 and	 college	 faculties	 are	 invited	 to	 join	 the	 Academic	 Alliance	 program	 to
access	unique	“open”	curriculum-based	education	on	the	following	topics:

	
Data	Science	and	Big	Data	Analytics
Information	Storage	and	Management
Cloud	Infrastructure	and	Services
Backup	Recovery	Systems	and	Architecture

The	program	provides	faculty	with	course	resources	to	prepare	students	for	opportunities
that	 exist	 in	 today’s	 evolving	 IT	 industry	 at	 no	 cost.	 For	 more	 information,	 visit
http://education.EMC.com/academicalliance.

http://education.EMC.com/academicalliance

EMC	Proven	Professional	Certification
EMC	 Proven	 Professional	 is	 a	 leading	 education	 and	 certification	 program	 in	 the	 IT
industry,	 providing	 comprehensive	 coverage	 of	 information	 storage	 technologies,
virtualization,	cloud	computing,	data	science/Big	Data	analytics,	and	more.

Being	proven	means	investing	in	yourself	and	formally	validating	your	expertise.

This	 book	 prepares	 you	 for	 Data	 Science	 Associate	 (EMCDSA)	 certification.	 Visit
http://education.EMC.com	for	details.

http://education.EMC.com

Chapter	1
Introduction	to	Big	Data	Analytics

Key	Concepts
1.	 Big	Data	overview
2.	 State	of	the	practice	in	analytics
3.	 Business	Intelligence	versus	Data	Science
4.	 Key	roles	for	the	new	Big	Data	ecosystem
5.	 The	Data	Scientist
6.	 Examples	of	Big	Data	analytics

Much	 has	 been	 written	 about	 Big	 Data	 and	 the	 need	 for	 advanced	 analytics	 within
industry,	academia,	and	government.	Availability	of	new	data	sources	and	the	rise	of	more
complex	analytical	opportunities	have	created	a	need	to	rethink	existing	data	architectures
to	enable	analytics	that	take	advantage	of	Big	Data.	In	addition,	significant	debate	exists
about	what	Big	Data	is	and	what	kinds	of	skills	are	required	to	make	best	use	of	it.	This
chapter	explains	several	key	concepts	to	clarify	what	is	meant	by	Big	Data,	why	advanced
analytics	are	needed,	how	Data	Science	differs	from	Business	Intelligence	(BI),	and	what
new	roles	are	needed	for	the	new	Big	Data	ecosystem.

1.1	Big	Data	Overview
Data	 is	 created	 constantly,	 and	 at	 an	 ever-increasing	 rate.	Mobile	 phones,	 social	media,
imaging	 technologies	 to	 determine	 a	medical	 diagnosis—all	 these	 and	more	 create	 new
data,	 and	 that	 must	 be	 stored	 somewhere	 for	 some	 purpose.	 Devices	 and	 sensors
automatically	generate	diagnostic	information	that	needs	to	be	stored	and	processed	in	real
time.	Merely	keeping	up	with	this	huge	influx	of	data	is	difficult,	but	substantially	more
challenging	 is	 analyzing	 vast	 amounts	 of	 it,	 especially	 when	 it	 does	 not	 conform	 to
traditional	 notions	 of	 data	 structure,	 to	 identify	 meaningful	 patterns	 and	 extract	 useful
information.	 These	 challenges	 of	 the	 data	 deluge	 present	 the	 opportunity	 to	 transform
business,	government,	science,	and	everyday	life.

Several	industries	have	led	the	way	in	developing	their	ability	to	gather	and	exploit	data:

	
Credit	card	companies	monitor	every	purchase	their	customers	make	and	can	identify
fraudulent	purchases	with	a	high	degree	of	accuracy	using	rules	derived	by
processing	billions	of	transactions.
Mobile	phone	companies	analyze	subscribers’	calling	patterns	to	determine,	for
example,	whether	a	caller’s	frequent	contacts	are	on	a	rival	network.	If	that	rival
network	is	offering	an	attractive	promotion	that	might	cause	the	subscriber	to	defect,
the	mobile	phone	company	can	proactively	offer	the	subscriber	an	incentive	to
remain	in	her	contract.
For	companies	such	as	LinkedIn	and	Facebook,	data	itself	is	their	primary	product.
The	valuations	of	these	companies	are	heavily	derived	from	the	data	they	gather	and
host,	which	contains	more	and	more	intrinsic	value	as	the	data	grows.

Three	attributes	stand	out	as	defining	Big	Data	characteristics:

	
Huge	volume	of	data:	Rather	than	thousands	or	millions	of	rows,	Big	Data	can	be
billions	of	rows	and	millions	of	columns.
Complexity	of	data	types	and	structures:	Big	Data	reflects	the	variety	of	new	data
sources,	formats,	and	structures,	including	digital	traces	being	left	on	the	web	and
other	digital	repositories	for	subsequent	analysis.
Speed	of	new	data	creation	and	growth:	Big	Data	can	describe	high	velocity	data,
with	rapid	data	ingestion	and	near	real	time	analysis.

Although	the	volume	of	Big	Data	tends	to	attract	the	most	attention,	generally	the	variety
and	velocity	of	the	data	provide	a	more	apt	definition	of	Big	Data.	(Big	Data	is	sometimes
described	as	having	3	Vs:	volume,	variety,	and	velocity.)	Due	to	its	size	or	structure,	Big
Data	cannot	be	efficiently	analyzed	using	only	traditional	databases	or	methods.	Big	Data
problems	 require	 new	 tools	 and	 technologies	 to	 store,	manage,	 and	 realize	 the	 business
benefit.	These	new	tools	and	technologies	enable	creation,	manipulation,	and	management
of	large	datasets	and	the	storage	environments	that	house	them.	Another	definition	of	Big
Data	comes	from	the	McKinsey	Global	report	from	2011:Big	Data	is	data	whose	scale,

distribution,	 diversity,	 and/or	 timeliness	 require	 the	 use	 of	 new	 technical
architectures	 and	 analytics	 to	 enable	 insights	 that	 unlock	 new	 sources	 of	 business
value.

McKinsey	&	Co.;	Big	Data:	The	Next	Frontier	for	Innovation,	Competition,	and	Productivity	[1]

McKinsey’s	 definition	 of	 Big	 Data	 implies	 that	 organizations	 will	 need	 new	 data
architectures	 and	 analytic	 sandboxes,	 new	 tools,	 new	 analytical	 methods,	 and	 an
integration	 of	 multiple	 skills	 into	 the	 new	 role	 of	 the	 data	 scientist,	 which	 will	 be
discussed	in	Section	1.3.	Figure	1.1	highlights	several	sources	of	the	Big	Data	deluge.

Figure	1.1	What’s	driving	the	data	deluge

The	rate	of	data	creation	is	accelerating,	driven	by	many	of	the	items	in	Figure	1.1.

Social	media	and	genetic	sequencing	are	among	the	fastest-growing	sources	of	Big	Data
and	examples	of	untraditional	sources	of	data	being	used	for	analysis.

For	 example,	 in	 2012	Facebook	users	 posted	 700	 status	 updates	 per	 second	worldwide,
which	 can	 be	 leveraged	 to	 deduce	 latent	 interests	 or	 political	 views	 of	 users	 and	 show
relevant	 ads.	For	 instance,	 an	 update	 in	which	 a	woman	 changes	 her	 relationship	 status
from	 “single”	 to	 “engaged”	 would	 trigger	 ads	 on	 bridal	 dresses,	 wedding	 planning,	 or
name-changing	services.

Facebook	can	also	construct	social	graphs	 to	analyze	which	users	are	connected	 to	each
other	 as	 an	 interconnected	 network.	 In	 March	 2013,	 Facebook	 released	 a	 new	 feature
called	“Graph	Search,”	enabling	users	and	developers	 to	search	social	graphs	for	people
with	similar	interests,	hobbies,	and	shared	locations.

Another	example	comes	from	genomics.	Genetic	sequencing	and	human	genome	mapping
provide	a	detailed	understanding	of	genetic	makeup	and	lineage.	The	health	care	industry
is	looking	toward	these	advances	to	help	predict	which	illnesses	a	person	is	likely	to	get	in
his	lifetime	and	take	steps	to	avoid	these	maladies	or	reduce	their	impact	through	the	use

of	 personalized	 medicine	 and	 treatment.	 Such	 tests	 also	 highlight	 typical	 responses	 to
different	 medications	 and	 pharmaceutical	 drugs,	 heightening	 risk	 awareness	 of	 specific
drug	treatments.

While	data	has	grown,	the	cost	 to	perform	this	work	has	fallen	dramatically.	The	cost	 to
sequence	one	human	genome	has	 fallen	 from	$100	million	 in	2001	 to	$10,000	 in	2011,
and	 the	 cost	 continues	 to	 drop.	 Now,	 websites	 such	 as	 23andme	 (Figure	 1.2)	 offer
genotyping	for	less	than	$100.	Although	genotyping	analyzes	only	a	fraction	of	a	genome
and	does	not	provide	as	much	granularity	as	genetic	sequencing,	it	does	point	to	the	fact
that	data	and	complex	analysis	is	becoming	more	prevalent	and	less	expensive	to	deploy.

Figure	1.2	Examples	of	what	can	be	learned	through	genotyping,	from	23andme.com

As	 illustrated	 by	 the	 examples	 of	 social	media	 and	 genetic	 sequencing,	 individuals	 and
organizations	both	derive	benefits	from	analysis	of	ever-larger	and	more	complex	datasets
that	require	increasingly	powerful	analytical	capabilities.

1.1.1	Data	Structures

http://23andme.com

Big	data	can	come	in	multiple	forms,	including	structured	and	non-structured	data	such	as
financial	data,	text	files,	multimedia	files,	and	genetic	mappings.	Contrary	to	much	of	the
traditional	data	analysis	performed	by	organizations,	most	of	the	Big	Data	is	unstructured
or	semi-structured	in	nature,	which	requires	different	techniques	and	tools	to	process	and
analyze.	[2]	Distributed	computing	environments	and	massively	parallel	processing	(MPP)
architectures	that	enable	parallelized	data	ingest	and	analysis	are	the	preferred	approach	to
process	such	complex	data.

With	this	in	mind,	this	section	takes	a	closer	look	at	data	structures.

Figure	1.3	shows	four	types	of	data	structures,	with	80–90%	of	future	data	growth	coming
from	non-structured	data	types.	[2]	Though	different,	 the	four	are	commonly	mixed.	For
example,	 a	 classic	 Relational	 Database	 Management	 System	 (RDBMS)	 may	 store	 call
logs	 for	 a	 software	 support	 call	 center.	 The	 RDBMS	 may	 store	 characteristics	 of	 the
support	calls	as	typical	structured	data,	with	attributes	such	as	time	stamps,	machine	type,
problem	type,	and	operating	system.	In	addition,	the	system	will	likely	have	unstructured,
quasi-	or	semi-structured	data,	such	as	free-form	call	log	information	taken	from	an	e-mail
ticket	of	 the	problem,	customer	chat	history,	or	 transcript	of	a	phone	call	describing	 the
technical	 problem	 and	 the	 solution	 or	 audio	 file	 of	 the	 phone	 call	 conversation.	Many
insights	could	be	extracted	from	the	unstructured,	quasi-	or	semi-structured	data	in	the	call
center	data.

Figure	1.3	Big	Data	Growth	is	increasingly	unstructured

Although	 analyzing	 structured	 data	 tends	 to	 be	 the	most	 familiar	 technique,	 a	 different
technique	 is	 required	 to	meet	 the	 challenges	 to	 analyze	 semi-structured	 data	 (shown	 as
XML),	quasi-structured	(shown	as	a	clickstream),	and	unstructured	data.

Here	are	examples	of	how	each	of	the	four	main	types	of	data	structures	may	look.

	
Structured	data:	Data	containing	a	defined	data	type,	format,	and	structure	(that	is,
transaction	data,	online	analytical	processing	[OLAP]	data	cubes,	traditional
RDBMS,	CSV	files,	and	even	simple	spreadsheets).	See	Figure	1.4.
Semi-structured	data:	Textual	data	files	with	a	discernible	pattern	that	enables
parsing	(such	as	Extensible	Markup	Language	[XML]	data	files	that	are	self-
describing	and	defined	by	an	XML	schema).	See	Figure	1.5.
Quasi-structured	data:	Textual	data	with	erratic	data	formats	that	can	be	formatted
with	effort,	tools,	and	time	(for	instance,	web	clickstream	data	that	may	contain
inconsistencies	in	data	values	and	formats).	See	Figure	1.6.
Unstructured	data:	Data	that	has	no	inherent	structure,	which	may	include	text
documents,	PDFs,	images,	and	video.	See	Figure	1.7.

Figure	1.4	Example	of	structured	data

Figure	1.5	Example	of	semi-structured	data

Figure	1.6	Example	of	EMC	Data	Science	search	results

Figure	1.7	Example	of	unstructured	data:	video	about	Antarctica	expedition	[3]

Quasi-structured	data	 is	 a	 common	phenomenon	 that	bears	closer	 scrutiny.	Consider	 the
following	 example.	A	user	 attends	 the	EMC	World	 conference	 and	 subsequently	 runs	 a
Google	search	online	 to	 find	 information	 related	 to	EMC	and	Data	Science.	This	would
produce	 a	URL	such	as	https://www.google.com/#q=EMC+	data+science	 and	 a	 list	 of
results,	such	as	in	the	first	graphic	of	Figure	1.5.

After	 doing	 this	 search,	 the	 user	 may	 choose	 the	 second	 link,	 to	 read	 more	 about	 the
headline	 “Data	Scientist—EMC	Education,	Training,	 and	Certification.”	This	brings	 the
user	 to	 an	 emc.com	 site	 focused	 on	 this	 topic	 and	 a	 new	 URL,
https://education.emc.com/guest/campaign/data_science.aspx,	 that	 displays	 the
page	shown	as	(2)	in	Figure	1.6.	Arriving	at	this	site,	the	user	may	decide	to	click	to	learn
more	 about	 the	 process	 of	 becoming	 certified	 in	 data	 science.	 The	 user	 chooses	 a	 link
toward	 the	 top	 of	 the	 page	 on	 Certifications,	 bringing	 the	 user	 to	 a	 new	 URL:
https://education.emc.com/guest/certification/framework/stf/data_science.aspx

which	is	(3)	in	Figure	1.6.

Visiting	 these	 three	 websites	 adds	 three	 URLs	 to	 the	 log	 files	 monitoring	 the	 user’s
computer	or	network	use.	These	three	URLs	are:
https://www.google.com/#q=EMC+data+science

https://education.emc.com/guest/campaign/data_science.aspx

https://education.emc.com/guest/certification/framework/stf/data_science.aspx

This	 set	 of	 three	 URLs	 reflects	 the	 websites	 and	 actions	 taken	 to	 find	 Data	 Science
information	related	to	EMC.	Together,	this	comprises	a	clickstream	that	can	be	parsed	and
mined	by	data	scientists	to	discover	usage	patterns	and	uncover	relationships	among	clicks
and	areas	of	interest	on	a	website	or	group	of	sites.

The	four	data	types	described	in	this	chapter	are	sometimes	generalized	into	two	groups:

https://www.google.com/#q=EMC+ data+science
http://emc.com
https://education.emc.com/guest/campaign/data_science.aspx
https://education.emc.com/guest/certification/framework/stf/data_science.aspx
https://www.google.com/#q=EMC+data+science
https://education.emc.com/guest/campaign/data_science.aspx
https://education.emc.com/guest/certification/framework/stf/data_science.aspx

structured	and	unstructured	data.	Big	Data	describes	new	kinds	of	data	with	which	most
organizations	may	not	be	used	 to	working.	With	 this	 in	mind,	 the	next	section	discusses
common	technology	architectures	from	the	standpoint	of	someone	wanting	to	analyze	Big
Data.

1.1.2	Analyst	Perspective	on	Data	Repositories
The	 introduction	 of	 spreadsheets	 enabled	 business	 users	 to	 create	 simple	 logic	 on	 data
structured	 in	 rows	 and	 columns	 and	 create	 their	 own	 analyses	 of	 business	 problems.
Database	administrator	training	is	not	required	to	create	spreadsheets:	They	can	be	set	up
to	 do	 many	 things	 quickly	 and	 independently	 of	 information	 technology	 (IT)	 groups.
Spreadsheets	 are	 easy	 to	 share,	 and	 end	 users	 have	 control	 over	 the	 logic	 involved.
However,	their	proliferation	can	result	in	“many	versions	of	the	truth.”	In	other	words,	it
can	 be	 challenging	 to	 determine	 if	 a	 particular	 user	 has	 the	most	 relevant	 version	 of	 a
spreadsheet,	with	the	most	current	data	and	logic	in	it.	Moreover,	if	a	laptop	is	lost	or	a	file
becomes	 corrupted,	 the	 data	 and	 logic	 within	 the	 spreadsheet	 could	 be	 lost.	 This	 is	 an
ongoing	 challenge	 because	 spreadsheet	 programs	 such	 as	 Microsoft	 Excel	 still	 run	 on
many	 computers	worldwide.	With	 the	 proliferation	of	 data	 islands	 (or	 spreadmarts),	 the
need	to	centralize	the	data	is	more	pressing	than	ever.

As	data	needs	grew,	so	did	more	scalable	data	warehousing	solutions.	These	technologies
enabled	data	to	be	managed	centrally,	providing	benefits	of	security,	failover,	and	a	single
repository	 where	 users	 could	 rely	 on	 getting	 an	 “official”	 source	 of	 data	 for	 financial
reporting	or	other	mission-critical	tasks.	This	structure	also	enabled	the	creation	of	OLAP
cubes	and	BI	analytical	tools,	which	provided	quick	access	to	a	set	of	dimensions	within
an	 RDBMS.	 More	 advanced	 features	 enabled	 performance	 of	 in-depth	 analytical
techniques	such	as	regressions	and	neural	networks.	Enterprise	Data	Warehouses	(EDWs)
are	critical	 for	 reporting	and	BI	 tasks	and	solve	many	of	 the	problems	 that	proliferating
spreadsheets	 introduce,	 such	 as	 which	 of	 multiple	 versions	 of	 a	 spreadsheet	 is	 correct.
EDWs—and	a	good	BI	strategy—provide	direct	data	feeds	from	sources	that	are	centrally
managed,	backed	up,	and	secured.

Despite	the	benefits	of	EDWs	and	BI,	these	systems	tend	to	restrict	the	flexibility	needed
to	perform	robust	or	exploratory	data	analysis.	With	the	EDW	model,	data	is	managed	and
controlled	 by	 IT	 groups	 and	 database	 administrators	 (DBAs),	 and	 data	 analysts	 must
depend	on	IT	for	access	and	changes	to	the	data	schemas.	This	imposes	longer	lead	times
for	analysts	to	get	data;	most	of	the	time	is	spent	waiting	for	approvals	rather	than	starting
meaningful	work.	Additionally,	many	times	the	EDW	rules	restrict	analysts	from	building
datasets.	Consequently,	it	is	common	for	additional	systems	to	emerge	containing	critical
data	 for	 constructing	 analytic	 datasets,	 managed	 locally	 by	 power	 users.	 IT	 groups
generally	 dislike	 existence	 of	 data	 sources	 outside	 of	 their	 control	 because,	 unlike	 an
EDW,	these	datasets	are	not	managed,	secured,	or	backed	up.	From	an	analyst	perspective,
EDW	and	BI	solve	problems	related	to	data	accuracy	and	availability.	However,	EDW	and
BI	introduce	new	problems	related	to	flexibility	and	agility,	which	were	less	pronounced
when	dealing	with	spreadsheets.

A	solution	to	this	problem	is	the	analytic	sandbox,	which	attempts	to	resolve	the	conflict
for	analysts	and	data	scientists	with	EDW	and	more	formally	managed	corporate	data.	In
this	 model,	 the	 IT	 group	 may	 still	 manage	 the	 analytic	 sandboxes,	 but	 they	 will	 be

purposefully	 designed	 to	 enable	 robust	 analytics,	 while	 being	 centrally	 managed	 and
secured.	These	sandboxes,	often	referred	to	as	workspaces,	are	designed	to	enable	teams
to	explore	many	datasets	in	a	controlled	fashion	and	are	not	typically	used	for	enterprise-
level	financial	reporting	and	sales	dashboards.

Many	 times,	 analytic	 sandboxes	 enable	 high-performance	 computing	 using	 in-database
processing—the	analytics	occur	within	the	database	itself.	The	idea	is	that	performance	of
the	analysis	will	be	better	if	the	analytics	are	run	in	the	database	itself,	rather	than	bringing
the	data	to	an	analytical	tool	that	resides	somewhere	else.	In-database	analytics,	discussed
further	 in	 Chapter	 11,	 “Advanced	 Analytics—Technology	 and	 Tools:	 In-Database
Analytics,”	creates	relationships	to	multiple	data	sources	within	an	organization	and	saves
time	 spent	 creating	 these	 data	 feeds	 on	 an	 individual	 basis.	 In-database	 processing	 for
deep	analytics	enables	faster	 turnaround	time	for	developing	and	executing	new	analytic
models,	while	 reducing,	 though	 not	 eliminating,	 the	 cost	 associated	with	 data	 stored	 in
local,	 “shadow”	 file	 systems.	 In	 addition,	 rather	 than	 the	 typical	 structured	 data	 in	 the
EDW,	 analytic	 sandboxes	 can	 house	 a	 greater	 variety	 of	 data,	 such	 as	 raw	data,	 textual
data,	 and	 other	 kinds	 of	 unstructured	 data,	 without	 interfering	 with	 critical	 production
databases.	Table	1.1	summarizes	 the	characteristics	of	 the	data	repositories	mentioned	in
this	section.

Table	1.1	Types	of	Data	Repositories,	from	an	Analyst	Perspective

Data	Repository Characteristics
Spreadsheets	and

data	marts
(“spreadmarts”)

Spreadsheets	and	low-volume	databases	for	recordkeeping
Analyst	depends	on	data	extracts.

Data	Warehouses

Centralized	data	containers	in	a	purpose-built	space
Supports	BI	and	reporting,	but	restricts	robust	analyses

Analyst	dependent	on	IT	and	DBAs	for	data	access	and	schema
changes

Analysts	must	spend	significant	time	to	get	aggregated	and
disaggregated	data	extracts	from	multiple	sources.

Analytic	Sandbox
(workspaces)

Data	assets	gathered	from	multiple	sources	and	technologies	for
analysis

Enables	flexible,	high-performance	analysis	in	a	nonproduction
environment;	can	leverage	in-database	processing

Reduces	costs	and	risks	associated	with	data	replication	into
“shadow”	file	systems

“Analyst	owned”	rather	than	“DBA	owned”

There	 are	 several	 things	 to	 consider	 with	 Big	 Data	 Analytics	 projects	 to	 ensure	 the
approach	fits	with	the	desired	goals.	Due	to	the	characteristics	of	Big	Data,	these	projects
lend	 themselves	 to	decision	 support	 for	 high-value,	 strategic	decision	making	with	high
processing	 complexity.	The	 analytic	 techniques	used	 in	 this	 context	 need	 to	 be	 iterative
and	 flexible,	 due	 to	 the	 high	 volume	 of	 data	 and	 its	 complexity.	 Performing	 rapid	 and
complex	 analysis	 requires	 high	 throughput	 network	 connections	 and	 a	 consideration	 for

the	 acceptable	 amount	 of	 latency.	 For	 instance,	 developing	 a	 real-time	 product
recommender	for	a	website	imposes	greater	system	demands	than	developing	a	near-real-
time	recommender,	which	may	still	provide	acceptable	performance,	have	slightly	greater
latency,	and	may	be	cheaper	to	deploy.	These	considerations	require	a	different	approach
to	thinking	about	analytics	challenges,	which	will	be	explored	further	in	the	next	section.

1.2	State	of	the	Practice	in	Analytics
Current	business	problems	provide	many	opportunities	for	organizations	to	become	more
analytical	and	data	driven,	as	shown	in	Table	1.2.

Table	1.2	Business	Drivers	for	Advanced	Analytics

Business	Driver Examples
Optimize	business	operations Sales,	pricing,	profitability,	efficiency

Identify	business	risk Customer	churn,	fraud,	default
Predict	new	business

opportunities Upsell,	cross-sell,	best	new	customer	prospects

Comply	with	laws	or	regulatory
requirements

Anti-Money	Laundering,	Fair	Lending,	Basel	II-III,
Sarbanes-Oxley	(SOX)

Table	 1.2	 outlines	 four	 categories	 of	 common	 business	 problems	 that	 organizations
contend	 with	 where	 they	 have	 an	 opportunity	 to	 leverage	 advanced	 analytics	 to	 create
competitive	 advantage.	 Rather	 than	 only	 performing	 standard	 reporting	 on	 these	 areas,
organizations	can	apply	advanced	analytical	techniques	to	optimize	processes	and	derive
more	 value	 from	 these	 common	 tasks.	 The	 first	 three	 examples	 do	 not	 represent	 new
problems.	Organizations	have	been	 trying	 to	 reduce	customer	 churn,	 increase	 sales,	 and
cross-sell	 customers	 for	 many	 years.	What	 is	 new	 is	 the	 opportunity	 to	 fuse	 advanced
analytical	 techniques	 with	 Big	 Data	 to	 produce	 more	 impactful	 analyses	 for	 these
traditional	problems.	The	last	example	portrays	emerging	regulatory	requirements.	Many
compliance	 and	 regulatory	 laws	 have	 been	 in	 existence	 for	 decades,	 but	 additional
requirements	 are	 added	 every	 year,	 which	 represent	 additional	 complexity	 and	 data
requirements	for	organizations.	Laws	related	to	anti-money	laundering	(AML)	and	fraud
prevention	require	advanced	analytical	techniques	to	comply	with	and	manage	properly.

1.2.1	BI	Versus	Data	Science
The	four	business	drivers	shown	in	Table	1.2	require	a	variety	of	analytical	techniques	to
address	them	properly.	Although	much	is	written	generally	about	analytics,	it	is	important
to	 distinguish	 between	BI	 and	Data	 Science.	As	 shown	 in	 Figure	 1.8,	 there	 are	 several
ways	to	compare	these	groups	of	analytical	techniques.

Figure	1.8	Comparing	BI	with	Data	Science

One	way	to	evaluate	the	type	of	analysis	being	performed	is	to	examine	the	time	horizon
and	the	kind	of	analytical	approaches	being	used.	BI	tends	to	provide	reports,	dashboards,
and	queries	on	business	questions	for	the	current	period	or	in	the	past.	BI	systems	make	it
easy	 to	 answer	 questions	 related	 to	 quarter-to-date	 revenue,	 progress	 toward	 quarterly
targets,	and	understand	how	much	of	a	given	product	was	sold	in	a	prior	quarter	or	year.
These	questions	tend	to	be	closed-ended	and	explain	current	or	past	behavior,	typically	by
aggregating	historical	data	and	grouping	it	in	some	way.	BI	provides	hindsight	and	some
insight	and	generally	answers	questions	related	to	“when”	and	“where”	events	occurred.

By	comparison,	Data	Science	tends	to	use	disaggregated	data	in	a	more	forward-looking,
exploratory	way,	focusing	on	analyzing	the	present	and	enabling	informed	decisions	about
the	future.	Rather	than	aggregating	historical	data	to	look	at	how	many	of	a	given	product
sold	 in	 the	 previous	 quarter,	 a	 team	may	 employ	Data	Science	 techniques	 such	 as	 time
series	 analysis,	 further	 discussed	 in	 Chapter	 8,	 “Advanced	 Analytical	 Theory	 and
Methods:	 Time	 Series	 Analysis,”	 to	 forecast	 future	 product	 sales	 and	 revenue	 more
accurately	than	extending	a	simple	trend	line.	In	addition,	Data	Science	tends	to	be	more
exploratory	 in	 nature	 and	may	 use	 scenario	 optimization	 to	 deal	with	more	 open-ended
questions.	 This	 approach	 provides	 insight	 into	 current	 activity	 and	 foresight	 into	 future

events,	while	generally	focusing	on	questions	related	to	“how”	and	“why”	events	occur.

Where	BI	problems	tend	to	require	highly	structured	data	organized	in	rows	and	columns
for	 accurate	 reporting,	 Data	 Science	 projects	 tend	 to	 use	 many	 types	 of	 data	 sources,
including	large	or	unconventional	datasets.	Depending	on	an	organization’s	goals,	it	may
choose	 to	 embark	 on	 a	 BI	 project	 if	 it	 is	 doing	 reporting,	 creating	 dashboards,	 or
performing	simple	visualizations,	or	it	may	choose	Data	Science	projects	if	it	needs	to	do
a	more	sophisticated	analysis	with	disaggregated	or	varied	datasets.

1.2.2	Current	Analytical	Architecture
As	 described	 earlier,	 Data	 Science	 projects	 need	 workspaces	 that	 are	 purpose-built	 for
experimenting	 with	 data,	 with	 flexible	 and	 agile	 data	 architectures.	Most	 organizations
still	 have	 data	 warehouses	 that	 provide	 excellent	 support	 for	 traditional	 reporting	 and
simple	 data	 analysis	 activities	 but	 unfortunately	 have	 a	 more	 difficult	 time	 supporting
more	robust	analyses.	This	section	examines	a	typical	analytical	data	architecture	that	may
exist	within	an	organization.

Figure	1.9	 shows	 a	 typical	 data	 architecture	 and	 several	 of	 the	 challenges	 it	 presents	 to
data	scientists	and	others	trying	to	do	advanced	analytics.	This	section	examines	the	data
flow	to	the	Data	Scientist	and	how	this	individual	fits	 into	the	process	of	getting	data	to
analyze	on	projects.

	
1.	 For	data	sources	to	be	loaded	into	the	data	warehouse,	data	needs	to	be	well

understood,	structured,	and	normalized	with	the	appropriate	data	type	definitions.
Although	this	kind	of	centralization	enables	security,	backup,	and	failover	of	highly
critical	data,	it	also	means	that	data	typically	must	go	through	significant
preprocessing	and	checkpoints	before	it	can	enter	this	sort	of	controlled	environment,
which	does	not	lend	itself	to	data	exploration	and	iterative	analytics.

2.	 As	a	result	of	this	level	of	control	on	the	EDW,	additional	local	systems	may	emerge
in	the	form	of	departmental	warehouses	and	local	data	marts	that	business	users
create	to	accommodate	their	need	for	flexible	analysis.	These	local	data	marts	may
not	have	the	same	constraints	for	security	and	structure	as	the	main	EDW	and	allow
users	to	do	some	level	of	more	in-depth	analysis.	However,	these	one-off	systems
reside	in	isolation,	often	are	not	synchronized	or	integrated	with	other	data	stores,	and
may	not	be	backed	up.

3.	 Once	in	the	data	warehouse,	data	is	read	by	additional	applications	across	the
enterprise	for	BI	and	reporting	purposes.	These	are	high-priority	operational
processes	getting	critical	data	feeds	from	the	data	warehouses	and	repositories.

4.	 At	the	end	of	this	workflow,	analysts	get	data	provisioned	for	their	downstream
analytics.	Because	users	generally	are	not	allowed	to	run	custom	or	intensive
analytics	on	production	databases,	analysts	create	data	extracts	from	the	EDW	to
analyze	data	offline	in	R	or	other	local	analytical	tools.	Many	times	these	tools	are
limited	to	in-memory	analytics	on	desktops	analyzing	samples	of	data,	rather	than	the
entire	population	of	a	dataset.	Because	these	analyses	are	based	on	data	extracts,	they
reside	in	a	separate	location,	and	the	results	of	the	analysis—and	any	insights	on	the

quality	of	the	data	or	anomalies—rarely	are	fed	back	into	the	main	data	repository.

Figure	1.9	Typical	analytic	architecture

Because	new	data	sources	slowly	accumulate	in	the	EDW	due	to	the	rigorous	validation
and	data	structuring	process,	data	is	slow	to	move	into	the	EDW,	and	the	data	schema	is
slow	 to	change.	Departmental	data	warehouses	may	have	been	originally	designed	for	a
specific	purpose	and	set	of	business	needs,	but	over	time	evolved	to	house	more	and	more
data,	some	of	which	may	be	forced	into	existing	schemas	to	enable	BI	and	the	creation	of
OLAP	 cubes	 for	 analysis	 and	 reporting.	 Although	 the	 EDW	 achieves	 the	 objective	 of
reporting	and	sometimes	the	creation	of	dashboards,	EDWs	generally	limit	 the	ability	of
analysts	 to	 iterate	 on	 the	 data	 in	 a	 separate	 nonproduction	 environment	where	 they	 can
conduct	in-depth	analytics	or	perform	analysis	on	unstructured	data.

The	 typical	 data	 architectures	 just	 described	 are	 designed	 for	 storing	 and	 processing
mission-critical	data,	supporting	enterprise	applications,	and	enabling	corporate	reporting
activities.	 Although	 reports	 and	 dashboards	 are	 still	 important	 for	 organizations,	 most
traditional	 data	 architectures	 inhibit	 data	 exploration	 and	 more	 sophisticated	 analysis.
Moreover,	 traditional	 data	 architectures	 have	 several	 additional	 implications	 for	 data
scientists.

	
High-value	data	is	hard	to	reach	and	leverage,	and	predictive	analytics	and	data
mining	activities	are	last	in	line	for	data.	Because	the	EDWs	are	designed	for	central
data	management	and	reporting,	those	wanting	data	for	analysis	are	generally
prioritized	after	operational	processes.
Data	moves	in	batches	from	EDW	to	local	analytical	tools.	This	workflow	means	that
data	scientists	are	limited	to	performing	in-memory	analytics	(such	as	with	R,	SAS,
SPSS,	or	Excel),	which	will	restrict	the	size	of	the	datasets	they	can	use.	As	such,

analysis	may	be	subject	to	constraints	of	sampling,	which	can	skew	model	accuracy.
Data	Science	projects	will	remain	isolated	and	ad	hoc,	rather	than	centrally	managed.
The	implication	of	this	isolation	is	that	the	organization	can	never	harness	the	power
of	advanced	analytics	in	a	scalable	way,	and	Data	Science	projects	will	exist	as
nonstandard	initiatives,	which	are	frequently	not	aligned	with	corporate	business
goals	or	strategy.

All	 these	symptoms	of	 the	 traditional	data	architecture	 result	 in	a	slow	“time-to-insight”
and	lower	business	impact	than	could	be	achieved	if	the	data	were	more	readily	accessible
and	supported	by	an	environment	that	promoted	advanced	analytics.	As	stated	earlier,	one
solution	 to	 this	 problem	 is	 to	 introduce	 analytic	 sandboxes	 to	 enable	 data	 scientists	 to
perform	advanced	 analytics	 in	 a	 controlled	 and	 sanctioned	way.	Meanwhile,	 the	 current
Data	 Warehousing	 solutions	 continue	 offering	 reporting	 and	 BI	 services	 to	 support
management	and	mission-critical	operations.

1.2.3	Drivers	of	Big	Data
To	better	understand	the	market	drivers	related	to	Big	Data,	it	is	helpful	to	first	understand
some	past	history	of	data	stores	and	 the	kinds	of	 repositories	and	 tools	 to	manage	 these
data	stores.

As	shown	in	Figure	1.10,	in	the	1990s	the	volume	of	information	was	often	measured	in
terabytes.	 Most	 organizations	 analyzed	 structured	 data	 in	 rows	 and	 columns	 and	 used
relational	databases	and	data	warehouses	to	manage	large	stores	of	enterprise	information.
The	 following	 decade	 saw	 a	 proliferation	 of	 different	 kinds	 of	 data	 sources—mainly
productivity	and	publishing	tools	such	as	content	management	repositories	and	networked
attached	 storage	 systems—to	 manage	 this	 kind	 of	 information,	 and	 the	 data	 began	 to
increase	 in	 size	 and	 started	 to	 be	 measured	 at	 petabyte	 scales.	 In	 the	 2010s,	 the
information	that	organizations	try	to	manage	has	broadened	to	include	many	other	kinds	of
data.	In	this	era,	everyone	and	everything	is	leaving	a	digital	footprint.	Figure	1.10	shows
a	 summary	 perspective	 on	 sources	 of	 Big	 Data	 generated	 by	 new	 applications	 and	 the
scale	and	growth	 rate	of	 the	data.	These	applications,	which	generate	data	volumes	 that
can	be	measured	in	exabyte	scale,	provide	opportunities	for	new	analytics	and	driving	new
value	for	organizations.	The	data	now	comes	from	multiple	sources,	such	as	these:

	
Medical	information,	such	as	genomic	sequencing	and	diagnostic	imaging
Photos	and	video	footage	uploaded	to	the	World	Wide	Web
Video	surveillance,	such	as	the	thousands	of	video	cameras	spread	across	a	city
Mobile	devices,	which	provide	geospatial	location	data	of	the	users,	as	well	as
metadata	about	text	messages,	phone	calls,	and	application	usage	on	smart	phones
Smart	devices,	which	provide	sensor-based	collection	of	information	from	smart
electric	grids,	smart	buildings,	and	many	other	public	and	industry	infrastructures
Nontraditional	IT	devices,	including	the	use	of	radio-frequency	identification	(RFID)
readers,	GPS	navigation	systems,	and	seismic	processing

Figure	1.10	Data	evolution	and	rise	of	Big	Data	sources

The	Big	Data	 trend	 is	 generating	 an	 enormous	 amount	 of	 information	 from	many	 new
sources.	 This	 data	 deluge	 requires	 advanced	 analytics	 and	 new	 market	 players	 to	 take
advantage	of	these	opportunities	and	new	market	dynamics,	which	will	be	discussed	in	the
following	section.

1.2.4	Emerging	Big	Data	Ecosystem	and	a	New	Approach	to	Analytics
Organizations	 and	 data	 collectors	 are	 realizing	 that	 the	 data	 they	 can	 gather	 from
individuals	contains	intrinsic	value	and,	as	a	result,	a	new	economy	is	emerging.	As	this
new	digital	economy	continues	to	evolve,	the	market	sees	the	introduction	of	data	vendors
and	data	 cleaners	 that	 use	 crowdsourcing	 (such	 as	Mechanical	Turk	 and	GalaxyZoo)	 to
test	 the	 outcomes	 of	machine	 learning	 techniques.	 Other	 vendors	 offer	 added	 value	 by
repackaging	open	source	tools	in	a	simpler	way	and	bringing	the	tools	to	market.	Vendors
such	 as	 Cloudera,	Hortonworks,	 and	 Pivotal	 have	 provided	 this	 value-add	 for	 the	 open
source	framework	Hadoop.

As	 the	 new	 ecosystem	 takes	 shape,	 there	 are	 four	 main	 groups	 of	 players	 within	 this
interconnected	web.	These	are	shown	in	Figure	1.11.

	
Data	devices	[shown	in	the	(1)	section	of	Figure	1.11]	and	the	“Sensornet”	gather
data	from	multiple	locations	and	continuously	generate	new	data	about	this	data.	For
each	gigabyte	of	new	data	created,	an	additional	petabyte	of	data	is	created	about	that
data.	[2]

For	example,	consider	someone	playing	an	online	video	game	through	a	PC,
game	console,	or	smartphone.	In	this	case,	the	video	game	provider	captures
data	about	the	skill	and	levels	attained	by	the	player.	Intelligent	systems	monitor
and	log	how	and	when	the	user	plays	the	game.	As	a	consequence,	the	game
provider	can	fine-tune	the	difficulty	of	the	game,	suggest	other	related	games
that	would	most	likely	interest	the	user,	and	offer	additional	equipment	and
enhancements	for	the	character	based	on	the	user’s	age,	gender,	and	interests.
This	information	may	get	stored	locally	or	uploaded	to	the	game	provider’s
cloud	to	analyze	the	gaming	habits	and	opportunities	for	upsell	and	cross-sell,
and	identify	archetypical	profiles	of	specific	kinds	of	users.
Smartphones	provide	another	rich	source	of	data.	In	addition	to	messaging	and
basic	phone	usage,	they	store	and	transmit	data	about	Internet	usage,	SMS
usage,	and	real-time	location.	This	metadata	can	be	used	for	analyzing	traffic
patterns	by	scanning	the	density	of	smartphones	in	locations	to	track	the	speed
of	cars	or	the	relative	traffic	congestion	on	busy	roads.	In	this	way,	GPS	devices
in	cars	can	give	drivers	real-time	updates	and	offer	alternative	routes	to	avoid
traffic	delays.
Retail	shopping	loyalty	cards	record	not	just	the	amount	an	individual	spends,
but	the	locations	of	stores	that	person	visits,	the	kinds	of	products	purchased,	the
stores	where	goods	are	purchased	most	often,	and	the	combinations	of	products
purchased	together.	Collecting	this	data	provides	insights	into	shopping	and
travel	habits	and	the	likelihood	of	successful	advertisement	targeting	for	certain
types	of	retail	promotions.

Data	collectors	[the	blue	ovals,	identified	as	(2)	within	Figure	1.11]	include	sample
entities	that	collect	data	from	the	device	and	users.

Data	results	from	a	cable	TV	provider	tracking	the	shows	a	person	watches,
which	TV	channels	someone	will	and	will	not	pay	for	to	watch	on	demand,	and
the	prices	someone	is	willing	to	pay	for	premium	TV	content
Retail	stores	tracking	the	path	a	customer	takes	through	their	store	while
pushing	a	shopping	cart	with	an	RFID	chip	so	they	can	gauge	which	products
get	the	most	foot	traffic	using	geospatial	data	collected	from	the	RFID	chips

Data	aggregators	(the	dark	gray	ovals	in	Figure	1.11,	marked	as	(3))	make	sense	of
the	data	collected	from	the	various	entities	from	the	“SensorNet”	or	the	“Internet	of
Things.”	These	organizations	compile	data	from	the	devices	and	usage	patterns
collected	by	government	agencies,	retail	stores,	and	websites.	In	turn,	they	can
choose	to	transform	and	package	the	data	as	products	to	sell	to	list	brokers,	who	may
want	to	generate	marketing	lists	of	people	who	may	be	good	targets	for	specific	ad
campaigns.
Data	users	and	buyers	are	denoted	by	(4)	in	Figure	1.11.	These	groups	directly
benefit	from	the	data	collected	and	aggregated	by	others	within	the	data	value	chain.

Retail	banks,	acting	as	a	data	buyer,	may	want	to	know	which	customers	have
the	highest	likelihood	to	apply	for	a	second	mortgage	or	a	home	equity	line	of
credit.	To	provide	input	for	this	analysis,	retail	banks	may	purchase	data	from	a

data	aggregator.	This	kind	of	data	may	include	demographic	information	about
people	living	in	specific	locations;	people	who	appear	to	have	a	specific	level	of
debt,	yet	still	have	solid	credit	scores	(or	other	characteristics	such	as	paying
bills	on	time	and	having	savings	accounts)	that	can	be	used	to	infer	credit
worthiness;	and	those	who	are	searching	the	web	for	information	about	paying
off	debts	or	doing	home	remodeling	projects.	Obtaining	data	from	these	various
sources	and	aggregators	will	enable	a	more	targeted	marketing	campaign,	which
would	have	been	more	challenging	before	Big	Data	due	to	the	lack	of
information	or	high-performing	technologies.
Using	technologies	such	as	Hadoop	to	perform	natural	language	processing	on
unstructured,	textual	data	from	social	media	websites,	users	can	gauge	the
reaction	to	events	such	as	presidential	campaigns.	People	may,	for	example,
want	to	determine	public	sentiments	toward	a	candidate	by	analyzing	related
blogs	and	online	comments.	Similarly,	data	users	may	want	to	track	and	prepare
for	natural	disasters	by	identifying	which	areas	a	hurricane	affects	first	and	how
it	moves,	based	on	which	geographic	areas	are	tweeting	about	it	or	discussing	it
via	social	media.

Figure	1.11	Emerging	Big	Data	ecosystems

As	 illustrated	 by	 this	 emerging	 Big	 Data	 ecosystem,	 the	 kinds	 of	 data	 and	 the	 related
market	 dynamics	 vary	 greatly.	 These	 datasets	 can	 include	 sensor	 data,	 text,	 structured
datasets,	and	social	media.	With	this	in	mind,	it	is	worth	recalling	that	these	datasets	will
not	work	well	within	 traditional	 EDWs,	which	were	 architected	 to	 streamline	 reporting
and	dashboards	and	be	centrally	managed.	Instead,	Big	Data	problems	and	projects	require
different	approaches	to	succeed.

Analysts	need	 to	partner	with	IT	and	DBAs	to	get	 the	data	 they	need	within	an	analytic
sandbox.	A	 typical	analytical	sandbox	contains	 raw	data,	aggregated	data,	and	data	with
multiple	kinds	of	structure.	The	sandbox	enables	robust	exploration	of	data	and	requires	a
savvy	user	to	leverage	and	take	advantage	of	data	in	the	sandbox	environment.

1.3	Key	Roles	for	the	New	Big	Data	Ecosystem
As	explained	in	the	context	of	the	Big	Data	ecosystem	in	Section	1.2.4,	new	players	have
emerged	 to	 curate,	 store,	 produce,	 clean,	 and	 transact	 data.	 In	 addition,	 the	 need	 for
applying	more	advanced	analytical	techniques	to	increasingly	complex	business	problems
has	 driven	 the	 emergence	 of	 new	 roles,	 new	 technology	 platforms,	 and	 new	 analytical
methods.	 This	 section	 explores	 the	 new	 roles	 that	 address	 these	 needs,	 and	 subsequent
chapters	explore	some	of	the	analytical	methods	and	technology	platforms.

The	 Big	 Data	 ecosystem	 demands	 three	 categories	 of	 roles,	 as	 shown	 in	 Figure	 1.12.
These	roles	were	described	 in	 the	McKinsey	Global	study	on	Big	Data,	 from	May	2011
[1].

Figure	1.12	Key	roles	of	the	new	Big	Data	ecosystem

The	 first	 group—Deep	 Analytical	 Talent—	 is	 technically	 savvy,	 with	 strong	 analytical
skills.	Members	possess	 a	 combination	of	 skills	 to	handle	 raw,	unstructured	data	 and	 to
apply	complex	analytical	techniques	at	massive	scales.	This	group	has	advanced	training
in	 quantitative	 disciplines,	 such	 as	mathematics,	 statistics,	 and	machine	 learning.	To	 do
their	jobs,	members	need	access	to	a	robust	analytic	sandbox	or	workspace	where	they	can
perform	 large-scale	 analytical	 data	 experiments.	 Examples	 of	 current	 professions	 fitting
into	this	group	include	statisticians,	economists,	mathematicians,	and	the	new	role	of	the
Data	Scientist.

The	McKinsey	study	forecasts	that	by	the	year	2018,	the	United	States	will	have	a	talent
gap	 of	 140,000–190,000	 people	with	 deep	 analytical	 talent.	 This	 does	 not	 represent	 the
number	 of	 people	 needed	 with	 deep	 analytical	 talent;	 rather,	 this	 range	 represents	 the
difference	between	what	will	be	available	 in	 the	workforce	compared	with	what	will	be

needed.	In	addition,	these	estimates	only	reflect	forecasted	talent	shortages	in	the	United
States;	the	number	would	be	much	larger	on	a	global	basis.

The	 second	 group—Data	Savvy	Professionals—has	 less	 technical	 depth	 but	 has	 a	 basic
knowledge	 of	 statistics	 or	 machine	 learning	 and	 can	 define	 key	 questions	 that	 can	 be
answered	 using	 advanced	 analytics.	 These	 people	 tend	 to	 have	 a	 base	 knowledge	 of
working	 with	 data,	 or	 an	 appreciation	 for	 some	 of	 the	 work	 being	 performed	 by	 data
scientists	 and	 others	 with	 deep	 analytical	 talent.	 Examples	 of	 data	 savvy	 professionals
include	 financial	 analysts,	market	 research	 analysts,	 life	 scientists,	 operations	managers,
and	business	and	functional	managers.

The	 McKinsey	 study	 forecasts	 the	 projected	 U.S.	 talent	 gap	 for	 this	 group	 to	 be	 1.5
million	 people	 by	 the	 year	 2018.	 At	 a	 high	 level,	 this	 means	 for	 every	 Data	 Scientist
profile	needed,	 the	gap	will	be	 ten	 times	as	 large	for	Data	Savvy	Professionals.	Moving
toward	becoming	a	data	savvy	professional	is	a	critical	step	in	broadening	the	perspective
of	managers,	directors,	and	leaders,	as	this	provides	an	idea	of	the	kinds	of	questions	that
can	be	solved	with	data.

The	 third	 category	 of	 people	mentioned	 in	 the	 study	 is	 Technology	 and	Data	 Enablers.
This	group	represents	people	providing	technical	expertise	to	support	analytical	projects,
such	 as	 provisioning	 and	 administrating	 analytical	 sandboxes,	 and	managing	 large-scale
data	 architectures	 that	 enable	 widespread	 analytics	 within	 companies	 and	 other
organizations.	This	role	requires	skills	related	to	computer	engineering,	programming,	and
database	administration.

These	 three	 groups	must	 work	 together	 closely	 to	 solve	 complex	 Big	 Data	 challenges.
Most	 organizations	 are	 familiar	with	people	 in	 the	 latter	 two	groups	mentioned,	 but	 the
first	 group,	 Deep	Analytical	 Talent,	 tends	 to	 be	 the	 newest	 role	 for	most	 and	 the	 least
understood.	 For	 simplicity,	 this	 discussion	 focuses	 on	 the	 emerging	 role	 of	 the	 Data
Scientist.	 It	 describes	 the	 kinds	 of	 activities	 that	 role	 performs	 and	 provides	 a	 more
detailed	view	of	the	skills	needed	to	fulfill	that	role.

There	are	three	recurring	sets	of	activities	that	data	scientists	perform:

	
Reframe	business	challenges	as	analytics	challenges.	Specifically,	this	is	a	skill	to
diagnose	business	problems,	consider	the	core	of	a	given	problem,	and	determine
which	kinds	of	candidate	analytical	methods	can	be	applied	to	solve	it.	This	concept
is	explored	further	in	Chapter	2,	“Data	Analytics	Lifecycle.”
Design,	implement,	and	deploy	statistical	models	and	data	mining	techniques	on
Big	Data.	This	set	of	activities	is	mainly	what	people	think	about	when	they	consider
the	role	of	the	Data	Scientist:	namely,	applying	complex	or	advanced	analytical
methods	to	a	variety	of	business	problems	using	data.	Chapter	3	through	Chapter	11
of	this	book	introduces	the	reader	to	many	of	the	most	popular	analytical	techniques
and	tools	in	this	area.
Develop	insights	that	lead	to	actionable	recommendations.	It	is	critical	to	note	that
applying	advanced	methods	to	data	problems	does	not	necessarily	drive	new	business
value.	Instead,	it	is	important	to	learn	how	to	draw	insights	out	of	the	data	and
communicate	them	effectively.	Chapter	12,	“The	Endgame,	or	Putting	It	All

Together,”	has	a	brief	overview	of	techniques	for	doing	this.

Data	scientists	are	generally	thought	of	as	having	five	main	sets	of	skills	and	behavioral
characteristics,	as	shown	in	Figure	1.13:

	
Quantitative	skill:	such	as	mathematics	or	statistics
Technical	aptitude:	namely,	software	engineering,	machine	learning,	and
programming	skills
Skeptical	mind-set	and	critical	thinking:	It	is	important	that	data	scientists	can
examine	their	work	critically	rather	than	in	a	one-sided	way.
Curious	and	creative:	Data	scientists	are	passionate	about	data	and	finding	creative
ways	to	solve	problems	and	portray	information.
Communicative	and	collaborative:	Data	scientists	must	be	able	to	articulate	the
business	value	in	a	clear	way	and	collaboratively	work	with	other	groups,	including
project	sponsors	and	key	stakeholders.

Figure	1.13	Profile	of	a	Data	Scientist

Data	 scientists	 are	 generally	 comfortable	 using	 this	 blend	 of	 skills	 to	 acquire,	manage,
analyze,	and	visualize	data	and	tell	compelling	stories	about	it.	The	next	section	includes
examples	of	what	Data	Science	teams	have	created	to	drive	new	value	or	innovation	with
Big	Data.

1.4	Examples	of	Big	Data	Analytics
After	 describing	 the	 emerging	Big	Data	 ecosystem	 and	 new	 roles	 needed	 to	 support	 its
growth,	 this	 section	 provides	 three	 examples	 of	 Big	 Data	 Analytics	 in	 different	 areas:
retail,	IT	infrastructure,	and	social	media.

As	 mentioned	 earlier,	 Big	 Data	 presents	 many	 opportunities	 to	 improve	 sales	 and
marketing	analytics.	An	example	of	this	is	the	U.S.	retailer	Target.	Charles	Duhigg’s	book
The	 Power	 of	 Habit	 [4]	 discusses	 how	 Target	 used	 Big	 Data	 and	 advanced	 analytical
methods	 to	 drive	 new	 revenue.	After	 analyzing	 consumer-purchasing	 behavior,	 Target’s
statisticians	determined	that	the	retailer	made	a	great	deal	of	money	from	three	main	life-
event	situations.

	
Marriage,	when	people	tend	to	buy	many	new	products
Divorce,	when	people	buy	new	products	and	change	their	spending	habits
Pregnancy,	when	people	have	many	new	things	to	buy	and	have	an	urgency	to	buy
them

Target	 determined	 that	 the	 most	 lucrative	 of	 these	 life-events	 is	 the	 third	 situation:
pregnancy.	Using	data	collected	from	shoppers,	Target	was	able	 to	 identify	 this	 fact	and
predict	which	of	 its	shoppers	were	pregnant.	 In	one	case,	Target	knew	a	female	shopper
was	pregnant	even	before	her	family	knew	[5].	This	kind	of	knowledge	allowed	Target	to
offer	specific	coupons	and	incentives	to	their	pregnant	shoppers.	In	fact,	Target	could	not
only	 determine	 if	 a	 shopper	was	 pregnant,	 but	 in	which	month	 of	 pregnancy	 a	 shopper
may	be.	This	enabled	Target	to	manage	its	inventory,	knowing	that	there	would	be	demand
for	 specific	 products	 and	 it	 would	 likely	 vary	 by	month	 over	 the	 coming	 nine-	 to	 ten-
month	cycles.

Hadoop	 [6]	 represents	another	example	of	Big	Data	 innovation	on	 the	 IT	 infrastructure.
Apache	 Hadoop	 is	 an	 open	 source	 framework	 that	 allows	 companies	 to	 process	 vast
amounts	 of	 information	 in	 a	 highly	 parallelized	 way.	 Hadoop	 represents	 a	 specific
implementation	of	the	MapReduce	paradigm	and	was	designed	by	Doug	Cutting	and	Mike
Cafarella	in	2005	to	use	data	with	varying	structures.	It	is	an	ideal	technical	framework	for
many	Big	Data	 projects,	which	 rely	 on	 large	 or	 unwieldy	 datasets	with	 unconventional
data	 structures.	One	of	 the	main	benefits	of	Hadoop	 is	 that	 it	 employs	a	distributed	 file
system,	meaning	 it	 can	 use	 a	 distributed	 cluster	 of	 servers	 and	 commodity	 hardware	 to
process	 large	 amounts	 of	 data.	 Some	 of	 the	 most	 common	 examples	 of	 Hadoop
implementations	 are	 in	 the	 social	media	 space,	where	Hadoop	can	manage	 transactions,
give	 textual	 updates,	 and	 develop	 social	 graphs	 among	 millions	 of	 users.	 Twitter	 and
Facebook	 generate	 massive	 amounts	 of	 unstructured	 data	 and	 use	 Hadoop	 and	 its
ecosystem	of	tools	to	manage	this	high	volume.	Hadoop	and	its	ecosystem	are	covered	in
Chapter	10,	“Advanced	Analytics—Technology	and	Tools:	MapReduce	and	Hadoop.”

Finally,	 social	 media	 represents	 a	 tremendous	 opportunity	 to	 leverage	 social	 and
professional	interactions	to	derive	new	insights.	LinkedIn	exemplifies	a	company	in	which
data	itself	is	the	product.	Early	on,	LinkedIn	founder	Reid	Hoffman	saw	the	opportunity	to
create	 a	 social	 network	 for	working	professionals.	As	of	 2014,	LinkedIn	has	more	 than

250	 million	 user	 accounts	 and	 has	 added	 many	 additional	 features	 and	 data-related
products,	 such	 as	 recruiting,	 job	 seeker	 tools,	 advertising,	 and	 InMaps,	 which	 show	 a
social	 graph	 of	 a	 user’s	 professional	 network.	 Figure	 1.14	 is	 an	 example	 of	 an	 InMap
visualization	that	enables	a	LinkedIn	user	to	get	a	broader	view	of	the	interconnectedness
of	his	contacts	and	understand	how	he	knows	most	of	them.

Figure	1.14	Data	visualization	of	a	user’s	social	network	using	InMaps

Summary
Big	 Data	 comes	 from	 myriad	 sources,	 including	 social	 media,	 sensors,	 the	 Internet	 of
Things,	video	surveillance,	and	many	sources	of	data	that	may	not	have	been	considered
data	 even	 a	 few	 years	 ago.	 As	 businesses	 struggle	 to	 keep	 up	 with	 changing	 market
requirements,	 some	 companies	 are	 finding	 creative	 ways	 to	 apply	 Big	 Data	 to	 their
growing	business	needs	and	increasingly	complex	problems.	As	organizations	evolve	their
processes	and	see	 the	opportunities	 that	Big	Data	can	provide,	 they	 try	 to	move	beyond
traditional	BI	activities,	such	as	using	data	to	populate	reports	and	dashboards,	and	move
toward	 Data	 Science-	 driven	 projects	 that	 attempt	 to	 answer	 more	 open-ended	 and
complex	questions.

However,	 exploiting	 the	 opportunities	 that	 Big	 Data	 presents	 requires	 new	 data
architectures,	 including	analytic	 sandboxes,	new	ways	of	working,	and	people	with	new
skill	sets.	These	drivers	are	causing	organizations	to	set	up	analytic	sandboxes	and	build
Data	 Science	 teams.	Although	 some	 organizations	 are	 fortunate	 to	 have	 data	 scientists,
most	 are	 not,	 because	 there	 is	 a	 growing	 talent	 gap	 that	makes	 finding	 and	 hiring	 data
scientists	 in	 a	 timely	 manner	 difficult.	 Still,	 organizations	 such	 as	 those	 in	 web	 retail,
health	 care,	 genomics,	 new	 IT	 infrastructures,	 and	 social	 media	 are	 beginning	 to	 take
advantage	of	Big	Data	and	apply	it	in	creative	and	novel	ways.

Exercises
	
1.	 What	are	the	three	characteristics	of	Big	Data,	and	what	are	the	main	considerations

in	processing	Big	Data?
2.	 What	is	an	analytic	sandbox,	and	why	is	it	important?
3.	 Explain	the	differences	between	BI	and	Data	Science.
4.	 Describe	the	challenges	of	the	current	analytical	architecture	for	data	scientists.
5.	 What	are	the	key	skill	sets	and	behavioral	characteristics	of	a	data	scientist?

Bibliography
	
1.	 [1]	C.	B.	B.	D.	Manyika,	“Big	Data:	The	Next	Frontier	for	Innovation,	Competition,
and	Productivity,”	McKinsey	Global	Institute,	2011.

2.	 [2]	D.	R.	John	Gantz,	“The	Digital	Universe	in	2020:	Big	Data,	Bigger	Digital
Shadows,	and	Biggest	Growth	in	the	Far	East,”	IDC,	2013.

3.	 [3]	http://www.willisresilience.com/emc-datalab	[Online].

4.	 [4]	C.	Duhigg,	The	Power	of	Habit:	Why	We	Do	What	We	Do	in	Life	and	Business,
New	York:	Random	House,	2012.

5.	 [5]	K.	Hill,	“How	Target	Figured	Out	a	Teen	Girl	Was	Pregnant	Before	Her	Father
Did,”	Forbes,	February	2012.

6.	 [6]	http://hadoop.apache.org	[Online].

http://www.willisresilience.com/emc-datalab
http://hadoop.apache.org

Chapter	2
Data	Analytics	Lifecycle

Key	Concepts
1.	 Discovery
2.	 Data	preparation
3.	 Model	planning
4.	 Model	execution
5.	 Communicate	results
6.	 Operationalize

Data	science	projects	differ	from	most	traditional	Business	Intelligence	projects	and	many
data	analysis	projects	in	that	data	science	projects	are	more	exploratory	in	nature.	For	this
reason,	it	is	critical	to	have	a	process	to	govern	them	and	ensure	that	the	participants	are
thorough	 and	 rigorous	 in	 their	 approach,	 yet	 not	 so	 rigid	 that	 the	 process	 impedes
exploration.

Many	problems	 that	appear	huge	and	daunting	at	 first	 can	be	broken	down	 into	 smaller
pieces	 or	 actionable	 phases	 that	 can	 be	 more	 easily	 addressed.	 Having	 a	 good	 process
ensures	 a	 comprehensive	 and	 repeatable	method	 for	 conducting	 analysis.	 In	 addition,	 it
helps	 focus	 time	 and	 energy	 early	 in	 the	 process	 to	 get	 a	 clear	 grasp	 of	 the	 business
problem	to	be	solved.

A	 common	 mistake	 made	 in	 data	 science	 projects	 is	 rushing	 into	 data	 collection	 and
analysis,	which	precludes	spending	sufficient	time	to	plan	and	scope	the	amount	of	work
involved,	 understanding	 requirements,	 or	 even	 framing	 the	 business	 problem	 properly.
Consequently,	participants	may	discover	mid-stream	that	the	project	sponsors	are	actually
trying	to	achieve	an	objective	that	may	not	match	the	available	data,	or	they	are	attempting
to	address	an	interest	that	differs	from	what	has	been	explicitly	communicated.	When	this
happens,	 the	project	may	need	 to	 revert	 to	 the	 initial	phases	of	 the	process	 for	a	proper
discovery	phase,	or	the	project	may	be	canceled.

Creating	 and	documenting	 a	 process	 helps	 demonstrate	 rigor,	which	provides	 additional
credibility	 to	 the	project	when	 the	data	 science	 team	shares	 its	 findings.	A	well-defined
process	also	offers	a	common	framework	for	others	to	adopt,	so	the	methods	and	analysis
can	be	repeated	in	the	future	or	as	new	members	join	a	team.

2.1	Data	Analytics	Lifecycle	Overview
The	 Data	 Analytics	 Lifecycle	 is	 designed	 specifically	 for	 Big	 Data	 problems	 and	 data
science	 projects.	 The	 lifecycle	 has	 six	 phases,	 and	 project	 work	 can	 occur	 in	 several
phases	at	once.	For	most	phases	in	the	lifecycle,	 the	movement	can	be	either	forward	or
backward.	This	 iterative	depiction	of	 the	 lifecycle	 is	 intended	 to	more	 closely	portray	 a
real	project,	in	which	aspects	of	the	project	move	forward	and	may	return	to	earlier	stages
as	new	information	is	uncovered	and	team	members	learn	more	about	various	stages	of	the
project.	This	enables	participants	to	move	iteratively	through	the	process	and	drive	toward
operationalizing	the	project	work.

2.1.1	Key	Roles	for	a	Successful	Analytics	Project
In	 recent	 years,	 substantial	 attention	 has	 been	 placed	 on	 the	 emerging	 role	 of	 the	 data
scientist.	 In	 October	 2012,	 Harvard	 Business	 Review	 featured	 an	 article	 titled	 “Data
Scientist:	The	Sexiest	 Job	of	 the	 21st	Century”	 [1],	 in	which	 experts	DJ	Patil	 and	Tom
Davenport	described	the	new	role	and	how	to	find	and	hire	data	scientists.	More	and	more
conferences	 are	 held	 annually	 focusing	 on	 innovation	 in	 the	 areas	 of	Data	 Science	 and
topics	dealing	with	Big	Data.	Despite	 this	strong	focus	on	 the	emerging	role	of	 the	data
scientist	specifically,	there	are	actually	seven	key	roles	that	need	to	be	fulfilled	for	a	high-
functioning	data	science	team	to	execute	analytic	projects	successfully.

Figure	 2.1	 depicts	 the	 various	 roles	 and	 key	 stakeholders	 of	 an	 analytics	 project.	 Each
plays	a	critical	part	in	a	successful	analytics	project.	Although	seven	roles	are	listed,	fewer
or	 more	 people	 can	 accomplish	 the	 work	 depending	 on	 the	 scope	 of	 the	 project,	 the
organizational	 structure,	 and	 the	 skills	 of	 the	 participants.	 For	 example,	 on	 a	 small,
versatile	team,	these	seven	roles	may	be	fulfilled	by	only	3	people,	but	a	very	large	project
may	require	20	or	more	people.	The	seven	roles	follow.

	
Business	User:	Someone	who	understands	the	domain	area	and	usually	benefits	from
the	results.	This	person	can	consult	and	advise	the	project	team	on	the	context	of	the
project,	the	value	of	the	results,	and	how	the	outputs	will	be	operationalized.	Usually
a	business	analyst,	line	manager,	or	deep	subject	matter	expert	in	the	project	domain
fulfills	this	role.
Project	Sponsor:	Responsible	for	the	genesis	of	the	project.	Provides	the	impetus
and	requirements	for	the	project	and	defines	the	core	business	problem.	Generally
provides	the	funding	and	gauges	the	degree	of	value	from	the	final	outputs	of	the
working	team.	This	person	sets	the	priorities	for	the	project	and	clarifies	the	desired
outputs.
Project	Manager:	Ensures	that	key	milestones	and	objectives	are	met	on	time	and	at
the	expected	quality.
Business	Intelligence	Analyst:	Provides	business	domain	expertise	based	on	a	deep
understanding	of	the	data,	key	performance	indicators	(KPIs),	key	metrics,	and
business	intelligence	from	a	reporting	perspective.	Business	Intelligence	Analysts
generally	create	dashboards	and	reports	and	have	knowledge	of	the	data	feeds	and
sources.

Database	Administrator	(DBA):	Provisions	and	configures	the	database
environment	to	support	the	analytics	needs	of	the	working	team.	These
responsibilities	may	include	providing	access	to	key	databases	or	tables	and	ensuring
the	appropriate	security	levels	are	in	place	related	to	the	data	repositories.
Data	Engineer:	Leverages	deep	technical	skills	to	assist	with	tuning	SQL	queries	for
data	management	and	data	extraction,	and	provides	support	for	data	ingestion	into	the
analytic	sandbox,	which	was	discussed	in	Chapter	1,	“Introduction	to	Big	Data
Analytics.”	Whereas	the	DBA	sets	up	and	configures	the	databases	to	be	used,	the
data	engineer	executes	the	actual	data	extractions	and	performs	substantial	data
manipulation	to	facilitate	the	analytics.	The	data	engineer	works	closely	with	the	data
scientist	to	help	shape	data	in	the	right	ways	for	analyses.
Data	Scientist:	Provides	subject	matter	expertise	for	analytical	techniques,	data
modeling,	and	applying	valid	analytical	techniques	to	given	business	problems.
Ensures	overall	analytics	objectives	are	met.	Designs	and	executes	analytical
methods	and	approaches	with	the	data	available	to	the	project.

Figure	2.1	Key	roles	for	a	successful	analytics	project

Although	 most	 of	 these	 roles	 are	 not	 new,	 the	 last	 two	 roles—data	 engineer	 and	 data
scientist—have	become	popular	and	in	high	demand	[2]	as	interest	in	Big	Data	has	grown.

2.1.2	Background	and	Overview	of	Data	Analytics	Lifecycle
The	Data	Analytics	Lifecycle	defines	analytics	process	best	practices	spanning	discovery
to	project	completion.	The	lifecycle	draws	from	established	methods	in	the	realm	of	data
analytics	 and	decision	 science.	This	 synthesis	was	developed	 after	 gathering	 input	 from
data	scientists	and	consulting	established	approaches	that	provided	input	on	pieces	of	the

process.	Several	of	the	processes	that	were	consulted	include	these:

	
Scientific	method	[3],	in	use	for	centuries,	still	provides	a	solid	framework	for
thinking	about	and	deconstructing	problems	into	their	principal	parts.	One	of	the
most	valuable	ideas	of	the	scientific	method	relates	to	forming	hypotheses	and
finding	ways	to	test	ideas.
CRISP-DM	[4]	provides	useful	input	on	ways	to	frame	analytics	problems	and	is	a
popular	approach	for	data	mining.
Tom	Davenport’s	DELTA	framework	[5]:	The	DELTA	framework	offers	an	approach
for	data	analytics	projects,	including	the	context	of	the	organization’s	skills,	datasets,
and	leadership	engagement.
Doug	Hubbard’s	Applied	Information	Economics	(AIE)	approach	[6]:	AIE
provides	a	framework	for	measuring	intangibles	and	provides	guidance	on
developing	decision	models,	calibrating	expert	estimates,	and	deriving	the	expected
value	of	information.
“MAD	Skills”	by	Cohen	et	al.	[7]	offers	input	for	several	of	the	techniques
mentioned	in	Phases	2–4	that	focus	on	model	planning,	execution,	and	key	findings.

Figure	2.2	presents	an	overview	of	the	Data	Analytics	Lifecycle	that	includes	six	phases.
Teams	commonly	learn	new	things	in	a	phase	that	cause	them	to	go	back	and	refine	the
work	 done	 in	 prior	 phases	 based	 on	 new	 insights	 and	 information	 that	 have	 been
uncovered.	For	 this	 reason,	Figure	2.2	 is	 shown	 as	 a	 cycle.	The	 circular	 arrows	 convey
iterative	movement	between	phases	until	the	team	members	have	sufficient	information	to
move	 to	 the	 next	 phase.	 The	 callouts	 include	 sample	 questions	 to	 ask	 to	 help	 guide
whether	each	of	the	team	members	has	enough	information	and	has	made	enough	progress
to	move	to	the	next	phase	of	the	process.	Note	that	these	phases	do	not	represent	formal
stage	gates;	rather,	they	serve	as	criteria	to	help	test	whether	it	makes	sense	to	stay	in	the
current	phase	or	move	to	the	next.

Figure	2.2	Overview	of	Data	Analytics	Lifecycle

Here	is	a	brief	overview	of	the	main	phases	of	the	Data	Analytics	Lifecycle:

	
Phase	1—Discovery:	In	Phase	1,	the	team	learns	the	business	domain,	including
relevant	history	such	as	whether	the	organization	or	business	unit	has	attempted
similar	projects	in	the	past	from	which	they	can	learn.	The	team	assesses	the
resources	available	to	support	the	project	in	terms	of	people,	technology,	time,	and
data.	Important	activities	in	this	phase	include	framing	the	business	problem	as	an
analytics	challenge	that	can	be	addressed	in	subsequent	phases	and	formulating	initial
hypotheses	(IHs)	to	test	and	begin	learning	the	data.
Phase	2—Data	preparation:	Phase	2	requires	the	presence	of	an	analytic	sandbox,
in	which	the	team	can	work	with	data	and	perform	analytics	for	the	duration	of	the
project.	The	team	needs	to	execute	extract,	load,	and	transform	(ELT)	or	extract,
transform	and	load	(ETL)	to	get	data	into	the	sandbox.	The	ELT	and	ETL	are

sometimes	abbreviated	as	ETLT.	Data	should	be	transformed	in	the	ETLT	process	so
the	team	can	work	with	it	and	analyze	it.	In	this	phase,	the	team	also	needs	to
familiarize	itself	with	the	data	thoroughly	and	take	steps	to	condition	the	data
(Section	2.3.4).
Phase	3—Model	planning:	Phase	3	is	model	planning,	where	the	team	determines
the	methods,	techniques,	and	workflow	it	intends	to	follow	for	the	subsequent	model
building	phase.	The	team	explores	the	data	to	learn	about	the	relationships	between
variables	and	subsequently	selects	key	variables	and	the	most	suitable	models.
Phase	4—Model	building:	In	Phase	4,	the	team	develops	datasets	for	testing,
training,	and	production	purposes.	In	addition,	in	this	phase	the	team	builds	and
executes	models	based	on	the	work	done	in	the	model	planning	phase.	The	team	also
considers	whether	its	existing	tools	will	suffice	for	running	the	models,	or	if	it	will
need	a	more	robust	environment	for	executing	models	and	workflows	(for	example,
fast	hardware	and	parallel	processing,	if	applicable).
Phase	5—Communicate	results:	In	Phase	5,	the	team,	in	collaboration	with	major
stakeholders,	determines	if	the	results	of	the	project	are	a	success	or	a	failure	based
on	the	criteria	developed	in	Phase	1.	The	team	should	identify	key	findings,	quantify
the	business	value,	and	develop	a	narrative	to	summarize	and	convey	findings	to
stakeholders.
Phase	6—Operationalize:	In	Phase	6,	the	team	delivers	final	reports,	briefings,
code,	and	technical	documents.	In	addition,	the	team	may	run	a	pilot	project	to
implement	the	models	in	a	production	environment.

Once	team	members	have	run	models	and	produced	findings,	it	 is	critical	to	frame	these
results	 in	 a	way	 that	 is	 tailored	 to	 the	 audience	 that	 engaged	 the	 team.	Moreover,	 it	 is
critical	to	frame	the	results	of	the	work	in	a	manner	that	demonstrates	clear	value.	If	the
team	 performs	 a	 technically	 accurate	 analysis	 but	 fails	 to	 translate	 the	 results	 into	 a
language	that	resonates	with	the	audience,	people	will	not	see	the	value,	and	much	of	the
time	and	effort	on	the	project	will	have	been	wasted.

The	rest	of	the	chapter	is	organized	as	follows.	Sections	2.2–2.7	discuss	in	detail	how	each
of	 the	 six	 phases	works,	 and	 Section	 2.8	 shows	 a	 case	 study	 of	 incorporating	 the	Data
Analytics	Lifecycle	in	a	real-world	data	science	project.

2.2	Phase	1:	Discovery
The	 first	 phase	 of	 the	Data	Analytics	Lifecycle	 involves	 discovery	 (Figure	2.3).	 In	 this
phase,	the	data	science	team	must	learn	and	investigate	the	problem,	develop	context	and
understanding,	 and	 learn	about	 the	data	 sources	needed	and	available	 for	 the	project.	 In
addition,	the	team	formulates	initial	hypotheses	that	can	later	be	tested	with	data.

Figure	2.3	Discovery	phase

2.2.1	Learning	the	Business	Domain
Understanding	the	domain	area	of	the	problem	is	essential.	In	many	cases,	data	scientists
will	 have	 deep	 computational	 and	 quantitative	 knowledge	 that	 can	 be	 broadly	 applied
across	many	 disciplines.	An	 example	 of	 this	 role	would	 be	 someone	with	 an	 advanced
degree	in	applied	mathematics	or	statistics.

These	 data	 scientists	 have	 deep	 knowledge	 of	 the	 methods,	 techniques,	 and	 ways	 for
applying	heuristics	 to	a	variety	of	business	and	conceptual	problems.	Others	 in	 this	area

may	 have	 deep	 knowledge	 of	 a	 domain	 area,	 coupled	 with	 quantitative	 expertise.	 An
example	of	this	would	be	someone	with	a	Ph.D.	in	life	sciences.	This	person	would	have
deep	knowledge	of	a	field	of	study,	such	as	oceanography,	biology,	or	genetics,	with	some
depth	of	quantitative	knowledge.

At	 this	 early	 stage	 in	 the	 process,	 the	 team	 needs	 to	 determine	 how	much	 business	 or
domain	 knowledge	 the	 data	 scientist	 needs	 to	 develop	 models	 in	 Phases	 3	 and	 4.	 The
earlier	the	team	can	make	this	assessment	the	better,	because	the	decision	helps	dictate	the
resources	 needed	 for	 the	 project	 team	 and	 ensures	 the	 team	 has	 the	 right	 balance	 of
domain	knowledge	and	technical	expertise.

2.2.2	Resources
As	part	of	the	discovery	phase,	the	team	needs	to	assess	the	resources	available	to	support
the	project.	In	this	context,	resources	include	technology,	tools,	systems,	data,	and	people.

During	 this	 scoping,	 consider	 the	 available	 tools	 and	 technology	 the	 team	will	 be	using
and	the	types	of	systems	needed	for	later	phases	to	operationalize	the	models.	In	addition,
try	to	evaluate	the	level	of	analytical	sophistication	within	the	organization	and	gaps	that
may	 exist	 related	 to	 tools,	 technology,	 and	 skills.	 For	 instance,	 for	 the	 model	 being
developed	to	have	longevity	in	an	organization,	consider	what	types	of	skills	and	roles	will
be	required	that	may	not	exist	today.	For	the	project	to	have	long-term	success,	what	types
of	skills	and	roles	will	be	needed	for	the	recipients	of	the	model	being	developed?	Does
the	 requisite	 level	 of	 expertise	 exist	within	 the	 organization	 today,	 or	will	 it	 need	 to	 be
cultivated?	Answering	these	questions	will	 influence	the	techniques	the	team	selects	and
the	kind	of	implementation	the	team	chooses	to	pursue	in	subsequent	phases	of	the	Data
Analytics	Lifecycle.

In	addition	to	the	skills	and	computing	resources,	 it	 is	advisable	to	take	inventory	of	the
types	 of	 data	 available	 to	 the	 team	 for	 the	 project.	 Consider	 if	 the	 data	 available	 is
sufficient	to	support	the	project’s	goals.	The	team	will	need	to	determine	whether	it	must
collect	additional	data,	purchase	it	from	outside	sources,	or	transform	existing	data.	Often,
projects	are	started	looking	only	at	the	data	available.	When	the	data	is	less	than	hoped	for,
the	size	and	scope	of	the	project	is	reduced	to	work	within	the	constraints	of	the	existing
data.

An	alternative	approach	is	to	consider	the	long-term	goals	of	this	kind	of	project,	without
being	constrained	by	the	current	data.	The	team	can	then	consider	what	data	is	needed	to
reach	 the	 long-term	 goals	 and	 which	 pieces	 of	 this	 multistep	 journey	 can	 be	 achieved
today	with	 the	 existing	data.	Considering	 longer-term	goals	 along	with	 short-term	goals
enables	teams	to	pursue	more	ambitious	projects	and	treat	a	project	as	the	first	step	of	a
more	strategic	initiative,	rather	than	as	a	standalone	initiative.	It	is	critical	to	view	projects
as	part	of	a	longer-term	journey,	especially	if	executing	projects	in	an	organization	that	is
new	 to	 Data	 Science	 and	may	 not	 have	 embarked	 on	 the	 optimum	 datasets	 to	 support
robust	analyses	up	to	this	point.

Ensure	 the	project	 team	has	 the	 right	mix	of	domain	experts,	 customers,	 analytic	 talent,
and	project	management	 to	be	effective.	 In	addition,	evaluate	how	much	 time	 is	needed
and	if	the	team	has	the	right	breadth	and	depth	of	skills.

After	taking	inventory	of	the	tools,	technology,	data,	and	people,	consider	if	the	team	has
sufficient	 resources	 to	 succeed	 on	 this	 project,	 or	 if	 additional	 resources	 are	 needed.
Negotiating	for	resources	at	the	outset	of	the	project,	while	scoping	the	goals,	objectives,
and	 feasibility,	 is	 generally	more	 useful	 than	 later	 in	 the	 process	 and	 ensures	 sufficient
time	 to	 execute	 it	 properly.	 Project	managers	 and	 key	 stakeholders	 have	 better	 success
negotiating	 for	 the	 right	 resources	 at	 this	 stage	 rather	 than	 later	 once	 the	 project	 is
underway.

2.2.3	Framing	the	Problem
Framing	the	problem	well	is	critical	to	the	success	of	the	project.	Framing	is	the	process
of	 stating	 the	analytics	problem	 to	be	 solved.	At	 this	point,	 it	 is	 a	best	practice	 to	write
down	 the	problem	statement	and	share	 it	with	 the	key	stakeholders.	Each	 team	member
may	hear	slightly	different	things	related	to	the	needs	and	the	problem	and	have	somewhat
different	 ideas	of	possible	solutions.	For	 these	reasons,	 it	 is	crucial	 to	state	 the	analytics
problem,	as	well	as	why	and	to	whom	it	is	important.	Essentially,	the	team	needs	to	clearly
articulate	the	current	situation	and	its	main	challenges.

As	 part	 of	 this	 activity,	 it	 is	 important	 to	 identify	 the	 main	 objectives	 of	 the	 project,
identify	what	needs	to	be	achieved	in	business	terms,	and	identify	what	needs	to	be	done
to	meet	 the	 needs.	Additionally,	 consider	 the	 objectives	 and	 the	 success	 criteria	 for	 the
project.	What	 is	 the	 team	 attempting	 to	 achieve	 by	 doing	 the	 project,	 and	what	will	 be
considered	“good	enough”	as	an	outcome	of	the	project?	This	is	critical	to	document	and
share	with	the	project	team	and	key	stakeholders.	It	is	best	practice	to	share	the	statement
of	 goals	 and	 success	 criteria	 with	 the	 team	 and	 confirm	 alignment	 with	 the	 project
sponsor’s	expectations.

Perhaps	equally	important	is	to	establish	failure	criteria.	Most	people	doing	projects	prefer
only	 to	 think	 of	 the	 success	 criteria	 and	 what	 the	 conditions	 will	 look	 like	 when	 the
participants	are	successful.	However,	this	is	almost	taking	a	best-case	scenario	approach,
assuming	that	everything	will	proceed	as	planned	and	the	project	team	will	reach	its	goals.
However,	no	matter	how	well	planned,	it	is	almost	impossible	to	plan	for	everything	that
will	emerge	in	a	project.	The	failure	criteria	will	guide	the	team	in	understanding	when	it
is	best	to	stop	trying	or	settle	for	the	results	that	have	been	gleaned	from	the	data.	Many
times	 people	 will	 continue	 to	 perform	 analyses	 past	 the	 point	 when	 any	 meaningful
insights	 can	 be	 drawn	 from	 the	 data.	 Establishing	 criteria	 for	 both	 success	 and	 failure
helps	 the	 participants	 avoid	 unproductive	 effort	 and	 remain	 aligned	 with	 the	 project
sponsors

2.2.4	Identifying	Key	Stakeholders
Another	important	step	is	to	identify	the	key	stakeholders	and	their	interests	in	the	project.
During	 these	 discussions,	 the	 team	 can	 identify	 the	 success	 criteria,	 key	 risks,	 and
stakeholders,	which	 should	 include	 anyone	who	will	 benefit	 from	 the	project	or	will	 be
significantly	 impacted	 by	 the	 project.	When	 interviewing	 stakeholders,	 learn	 about	 the
domain	 area	 and	 any	 relevant	 history	 from	 similar	 analytics	 projects.	 For	 example,	 the
team	may	 identify	 the	 results	each	stakeholder	wants	 from	the	project	and	 the	criteria	 it
will	use	to	judge	the	success	of	the	project.

Keep	 in	 mind	 that	 the	 analytics	 project	 is	 being	 initiated	 for	 a	 reason.	 It	 is	 critical	 to

articulate	the	pain	points	as	clearly	as	possible	to	address	them	and	be	aware	of	areas	to
pursue	 or	 avoid	 as	 the	 team	 gets	 further	 into	 the	 analytical	 process.	 Depending	 on	 the
number	 of	 stakeholders	 and	 participants,	 the	 team	 may	 consider	 outlining	 the	 type	 of
activity	 and	 participation	 expected	 from	 each	 stakeholder	 and	 participant.	 This	 will	 set
clear	expectations	with	the	participants	and	avoid	delays	later	when,	for	example,	the	team
may	 feel	 it	 needs	 to	wait	 for	 approval	 from	 someone	who	 views	 himself	 as	 an	 adviser
rather	than	an	approver	of	the	work	product.

2.2.5	Interviewing	the	Analytics	Sponsor
The	 team	 should	 plan	 to	 collaborate	 with	 the	 stakeholders	 to	 clarify	 and	 frame	 the
analytics	problem.	At	the	outset,	project	sponsors	may	have	a	predetermined	solution	that
may	 not	 necessarily	 realize	 the	 desired	 outcome.	 In	 these	 cases,	 the	 team	must	 use	 its
knowledge	and	expertise	to	identify	the	true	underlying	problem	and	appropriate	solution.

For	 instance,	 suppose	 in	 the	 early	 phase	 of	 a	 project,	 the	 team	 is	 told	 to	 create	 a
recommender	system	for	the	business	and	that	the	way	to	do	this	is	by	speaking	with	three
people	and	integrating	the	product	recommender	into	a	legacy	corporate	system.	Although
this	may	be	a	valid	approach,	 it	 is	 important	 to	 test	 the	assumptions	and	develop	a	clear
understanding	of	the	problem.	The	data	science	team	typically	may	have	a	more	objective
understanding	of	the	problem	set	than	the	stakeholders,	who	may	be	suggesting	solutions
to	a	given	problem.	Therefore,	the	team	can	probe	deeper	into	the	context	and	domain	to
clearly	 define	 the	 problem	 and	 propose	 possible	 paths	 from	 the	 problem	 to	 a	 desired
outcome.	 In	 essence,	 the	 data	 science	 team	 can	 take	 a	more	 objective	 approach,	 as	 the
stakeholders	may	have	developed	biases	over	time,	based	on	their	experience.	Also,	what
may	 have	 been	 true	 in	 the	 past	 may	 no	 longer	 be	 a	 valid	 working	 assumption.	 One
possible	way	to	circumvent	this	issue	is	for	the	project	sponsor	to	focus	on	clearly	defining
the	requirements,	while	the	other	members	of	the	data	science	team	focus	on	the	methods
needed	to	achieve	the	goals.

When	 interviewing	 the	 main	 stakeholders,	 the	 team	 needs	 to	 take	 time	 to	 thoroughly
interview	the	project	sponsor,	who	tends	to	be	the	one	funding	the	project	or	providing	the
high-level	requirements.	This	person	understands	the	problem	and	usually	has	an	idea	of	a
potential	working	solution.	It	is	critical	to	thoroughly	understand	the	sponsor’s	perspective
to	 guide	 the	 team	 in	 getting	 started	 on	 the	 project.	Here	 are	 some	 tips	 for	 interviewing
project	sponsors:

	
Prepare	for	the	interview;	draft	questions,	and	review	with	colleagues.
Use	open-ended	questions;	avoid	asking	leading	questions.
Probe	for	details	and	pose	follow-up	questions.
Avoid	filling	every	silence	in	the	conversation;	give	the	other	person	time	to	think.
Let	the	sponsors	express	their	ideas	and	ask	clarifying	questions,	such	as	“Why?	Is
that	correct?	Is	this	idea	on	target?	Is	there	anything	else?”
Use	active	listening	techniques;	repeat	back	what	was	heard	to	make	sure	the	team
heard	it	correctly,	or	reframe	what	was	said.

Try	to	avoid	expressing	the	team’s	opinions,	which	can	introduce	bias;	instead,	focus
on	listening.
Be	mindful	of	the	body	language	of	the	interviewers	and	stakeholders;	use	eye
contact	where	appropriate,	and	be	attentive.
Minimize	distractions.
Document	what	the	team	heard,	and	review	it	with	the	sponsors.

Following	is	a	brief	list	of	common	questions	that	are	helpful	to	ask	during	the	discovery
phase	when	interviewing	the	project	sponsor.	The	responses	will	begin	to	shape	the	scope
of	the	project	and	give	the	team	an	idea	of	the	goals	and	objectives	of	the	project.

	
What	business	problem	is	the	team	trying	to	solve?
What	is	the	desired	outcome	of	the	project?
What	data	sources	are	available?
What	industry	issues	may	impact	the	analysis?
What	timelines	need	to	be	considered?
Who	could	provide	insight	into	the	project?
Who	has	final	decision-making	authority	on	the	project?
How	will	the	focus	and	scope	of	the	problem	change	if	the	following	dimensions
change:

Time:	Analyzing	1	year	or	10	years’	worth	of	data?
People:	Assess	impact	of	changes	in	resources	on	project	timeline.
Risk:	Conservative	to	aggressive
Resources:	None	to	unlimited	(tools,	technology,	systems)
Size	and	attributes	of	data:	Including	internal	and	external	data	sources

2.2.6	Developing	Initial	Hypotheses
Developing	a	set	of	IHs	is	a	key	facet	of	the	discovery	phase.	This	step	involves	forming
ideas	that	the	team	can	test	with	data.	Generally,	it	is	best	to	come	up	with	a	few	primary
hypotheses	to	test	and	then	be	creative	about	developing	several	more.	These	IHs	form	the
basis	of	the	analytical	tests	the	team	will	use	in	later	phases	and	serve	as	the	foundation	for
the	 findings	 in	 Phase	 5.	 Hypothesis	 testing	 from	 a	 statistical	 perspective	 is	 covered	 in
greater	detail	in	Chapter	3,	“Review	of	Basic	Data	Analytic	Methods	Using	R.”

In	this	way,	the	team	can	compare	its	answers	with	the	outcome	of	an	experiment	or	test	to
generate	additional	possible	solutions	to	problems.	As	a	result,	the	team	will	have	a	much
richer	 set	 of	 observations	 to	 choose	 from	and	more	 choices	 for	 agreeing	upon	 the	most
impactful	conclusions	from	a	project.

Another	 part	 of	 this	 process	 involves	 gathering	 and	 assessing	 hypotheses	 from
stakeholders	 and	 domain	 experts	 who	 may	 have	 their	 own	 perspective	 on	 what	 the

problem	 is,	 what	 the	 solution	 should	 be,	 and	 how	 to	 arrive	 at	 a	 solution.	 These
stakeholders	would	know	the	domain	area	well	and	can	offer	suggestions	on	ideas	to	test
as	 the	 team	 formulates	hypotheses	during	 this	phase.	The	 team	will	 likely	 collect	many
ideas	that	may	illuminate	the	operating	assumptions	of	the	stakeholders.	These	ideas	will
also	give	the	team	opportunities	to	expand	the	project	scope	into	adjacent	spaces	where	it
makes	 sense	 or	 design	 experiments	 in	 a	meaningful	way	 to	 address	 the	most	 important
interests	of	the	stakeholders.	As	part	of	this	exercise,	it	can	be	useful	to	obtain	and	explore
some	 initial	 data	 to	 inform	discussions	with	 stakeholders	 during	 the	hypothesis-forming
stage.

2.2.7	Identifying	Potential	Data	Sources
As	part	of	the	discovery	phase,	identify	the	kinds	of	data	the	team	will	need	to	solve	the
problem.	 Consider	 the	 volume,	 type,	 and	 time	 span	 of	 the	 data	 needed	 to	 test	 the
hypotheses.	Ensure	 that	 the	 team	can	access	more	 than	simply	aggregated	data.	 In	most
cases,	 the	 team	 will	 need	 the	 raw	 data	 to	 avoid	 introducing	 bias	 for	 the	 downstream
analysis.	 Recalling	 the	 characteristics	 of	 Big	 Data	 from	 Chapter	 1,	 assess	 the	 main
characteristics	of	 the	data,	with	 regard	 to	 its	volume,	variety,	 and	velocity	of	 change.	A
thorough	diagnosis	of	the	data	situation	will	influence	the	kinds	of	tools	and	techniques	to
use	in	Phases	2-4	of	the	Data	Analytics	Lifecycle.	In	addition,	performing	data	exploration
in	this	phase	will	help	the	team	determine	the	amount	of	data	needed,	such	as	the	amount
of	historical	data	to	pull	from	existing	systems	and	the	data	structure.	Develop	an	idea	of
the	scope	of	the	data	needed,	and	validate	that	idea	with	the	domain	experts	on	the	project.

The	team	should	perform	five	main	activities	during	this	step	of	the	discovery	phase:

	
Identify	data	sources:	Make	a	list	of	candidate	data	sources	the	team	may	need	to
test	the	initial	hypotheses	outlined	in	this	phase.	Make	an	inventory	of	the	datasets
currently	available	and	those	that	can	be	purchased	or	otherwise	acquired	for	the	tests
the	team	wants	to	perform.
Capture	aggregate	data	sources:	This	is	for	previewing	the	data	and	providing
high-level	understanding.	It	enables	the	team	to	gain	a	quick	overview	of	the	data	and
perform	further	exploration	on	specific	areas.	It	also	points	the	team	to	possible	areas
of	interest	within	the	data.
Review	the	raw	data:	Obtain	preliminary	data	from	initial	data	feeds.	Begin
understanding	the	interdependencies	among	the	data	attributes,	and	become	familiar
with	the	content	of	the	data,	its	quality,	and	its	limitations.
Evaluate	the	data	structures	and	tools	needed:	The	data	type	and	structure	dictate
which	tools	the	team	can	use	to	analyze	the	data.	This	evaluation	gets	the	team
thinking	about	which	technologies	may	be	good	candidates	for	the	project	and	how	to
start	getting	access	to	these	tools.
Scope	the	sort	of	data	infrastructure	needed	for	this	type	of	problem:	In	addition
to	the	tools	needed,	the	data	influences	the	kind	of	infrastructure	that’s	required,	such
as	disk	storage	and	network	capacity.

Unlike	many	traditional	stage-gate	processes,	 in	which	 the	 team	can	advance	only	when

specific	criteria	are	met,	 the	Data	Analytics	Lifecycle	 is	 intended	 to	accommodate	more
ambiguity.	 This	 more	 closely	 reflects	 how	 data	 science	 projects	 work	 in	 real-life
situations.	For	each	phase	of	the	process,	it	is	recommended	to	pass	certain	checkpoints	as
a	 way	 of	 gauging	 whether	 the	 team	 is	 ready	 to	 move	 to	 the	 next	 phase	 of	 the	 Data
Analytics	Lifecycle.

The	team	can	move	to	the	next	phase	when	it	has	enough	information	to	draft	an	analytics
plan	and	share	it	for	peer	review.	Although	a	peer	review	of	the	plan	may	not	actually	be
required	by	the	project,	creating	the	plan	is	a	good	test	of	the	team’s	grasp	of	the	business
problem	and	the	team’s	approach	to	addressing	it.	Creating	the	analytic	plan	also	requires
a	 clear	understanding	of	 the	domain	 area,	 the	problem	 to	be	 solved,	 and	 scoping	of	 the
data	 sources	 to	 be	 used.	 Developing	 success	 criteria	 early	 in	 the	 project	 clarifies	 the
problem	 definition	 and	 helps	 the	 team	 when	 it	 comes	 time	 to	 make	 choices	 about	 the
analytical	methods	being	used	in	later	phases.

2.3	Phase	2:	Data	Preparation
The	 second	 phase	 of	 the	 Data	 Analytics	 Lifecycle	 involves	 data	 preparation,	 which
includes	 the	 steps	 to	 explore,	 preprocess,	 and	 condition	 data	 prior	 to	 modeling	 and
analysis.	 In	 this	 phase,	 the	 team	 needs	 to	 create	 a	 robust	 environment	 in	 which	 it	 can
explore	the	data	that	is	separate	from	a	production	environment.	Usually,	this	is	done	by
preparing	 an	 analytics	 sandbox.	 To	 get	 the	 data	 into	 the	 sandbox,	 the	 team	 needs	 to
perform	ETLT,	 by	 a	 combination	 of	 extracting,	 transforming,	 and	 loading	 data	 into	 the
sandbox.	 Once	 the	 data	 is	 in	 the	 sandbox,	 the	 team	 needs	 to	 learn	 about	 the	 data	 and
become	familiar	with	 it.	Understanding	 the	data	 in	detail	 is	critical	 to	 the	success	of	 the
project.	The	 team	also	must	decide	how	 to	condition	and	 transform	data	 to	get	 it	 into	a
format	to	facilitate	subsequent	analysis.	The	team	may	perform	data	visualizations	to	help
team	members	understand	the	data,	including	its	trends,	outliers,	and	relationships	among
data	variables.	Each	of	 these	steps	of	 the	data	preparation	phase	 is	discussed	 throughout
this	section.

Data	preparation	tends	to	be	the	most	labor-intensive	step	in	the	analytics	lifecycle.	In	fact,
it	is	common	for	teams	to	spend	at	least	50%	of	a	data	science	project’s	time	in	this	critical
phase.	 If	 the	 team	 cannot	 obtain	 enough	 data	 of	 sufficient	 quality,	 it	may	 be	 unable	 to
perform	the	subsequent	steps	in	the	lifecycle	process.

Figure	 2.4	 shows	 an	 overview	 of	 the	 Data	 Analytics	 Lifecycle	 for	 Phase	 2.	 The	 data
preparation	 phase	 is	 generally	 the	 most	 iterative	 and	 the	 one	 that	 teams	 tend	 to
underestimate	most	 often.	This	 is	 because	most	 teams	 and	 leaders	 are	 anxious	 to	 begin
analyzing	the	data,	testing	hypotheses,	and	getting	answers	to	some	of	the	questions	posed
in	Phase	1.	Many	tend	to	jump	into	Phase	3	or	Phase	4	to	begin	rapidly	developing	models
and	algorithms	without	spending	the	time	to	prepare	the	data	for	modeling.	Consequently,
teams	come	to	realize	the	data	they	are	working	with	does	not	allow	them	to	execute	the
models	they	want,	and	they	end	up	back	in	Phase	2	anyway.

Figure	2.4	Data	preparation	phase

2.3.1	Preparing	the	Analytic	Sandbox
The	 first	 subphase	 of	 data	 preparation	 requires	 the	 team	 to	 obtain	 an	 analytic	 sandbox
(also	 commonly	 referred	 to	 as	 a	workspace),	 in	 which	 the	 team	 can	 explore	 the	 data
without	interfering	with	live	production	databases.	Consider	an	example	in	which	the	team
needs	 to	work	with	 a	 company’s	 financial	 data.	 The	 team	 should	 access	 a	 copy	 of	 the
financial	 data	 from	 the	 analytic	 sandbox	 rather	 than	 interacting	 with	 the	 production
version	 of	 the	 organization’s	main	 database,	 because	 that	will	 be	 tightly	 controlled	 and
needed	for	financial	reporting.

When	 developing	 the	 analytic	 sandbox,	 it	 is	 a	 best	 practice	 to	 collect	 all	 kinds	 of	 data
there,	as	team	members	need	access	to	high	volumes	and	varieties	of	data	for	a	Big	Data
analytics	 project.	 This	 can	 include	 everything	 from	 summary-level	 aggregated	 data,
structured	 data,	 raw	 data	 feeds,	 and	 unstructured	 text	 data	 from	 call	 logs	 or	 web	 logs,
depending	on	the	kind	of	analysis	the	team	plans	to	undertake.

This	 expansive	 approach	 for	 attracting	 data	 of	 all	 kind	 differs	 considerably	 from	 the
approach	advocated	by	many	information	technology	(IT)	organizations.	Many	IT	groups
provide	access	 to	only	a	particular	subsegment	of	 the	data	for	a	specific	purpose.	Often,
the	mindset	of	the	IT	group	is	to	provide	the	minimum	amount	of	data	required	to	allow
the	 team	 to	 achieve	 its	 objectives.	 Conversely,	 the	 data	 science	 team	 wants	 access	 to
everything.	From	its	perspective,	more	data	 is	better,	as	oftentimes	data	science	projects
are	a	mixture	of	purpose-driven	analyses	and	experimental	approaches	to	test	a	variety	of
ideas.	 In	 this	 context,	 it	 can	 be	 challenging	 for	 a	 data	 science	 team	 if	 it	 has	 to	 request
access	 to	 each	 and	 every	dataset	 and	 attribute	one	 at	 a	 time.	Because	of	 these	differing
views	on	data	access	and	use,	it	is	critical	for	the	data	science	team	to	collaborate	with	IT,
make	clear	what	it	is	trying	to	accomplish,	and	align	goals.

During	these	discussions,	the	data	science	team	needs	to	give	IT	a	justification	to	develop
an	analytics	sandbox,	which	is	separate	from	the	traditional	IT-governed	data	warehouses
within	 an	 organization.	 Successfully	 and	 amicably	 balancing	 the	 needs	 of	 both	 the	 data
science	team	and	IT	requires	a	positive	working	relationship	between	multiple	groups	and
data	owners.	The	payoff	is	great.	The	analytic	sandbox	enables	organizations	to	undertake
more	ambitious	data	science	projects	and	move	beyond	doing	traditional	data	analysis	and
Business	Intelligence	to	perform	more	robust	and	advanced	predictive	analytics.

Expect	the	sandbox	to	be	large.	It	may	contain	raw	data,	aggregated	data,	and	other	data
types	 that	 are	 less	 commonly	 used	 in	 organizations.	 Sandbox	 size	 can	 vary	 greatly
depending	on	the	project.	A	good	rule	is	to	plan	for	the	sandbox	to	be	at	least	5–10	times
the	size	of	the	original	datasets,	partly	because	copies	of	the	data	may	be	created	that	serve
as	specific	tables	or	data	stores	for	specific	kinds	of	analysis	in	the	project.

Although	 the	 concept	 of	 an	 analytics	 sandbox	 is	 relatively	 new,	 companies	 are	making
progress	in	this	area	and	are	finding	ways	to	offer	sandboxes	and	workspaces	where	teams
can	access	datasets	and	work	in	a	way	that	is	acceptable	to	both	the	data	science	teams	and
the	IT	groups.

2.3.2	Performing	ETLT
As	 the	 team	 looks	 to	 begin	 data	 transformations,	 make	 sure	 the	 analytics	 sandbox	 has
ample	 bandwidth	 and	 reliable	 network	 connections	 to	 the	 underlying	 data	 sources	 to
enable	 uninterrupted	 read	 and	 write.	 In	 ETL,	 users	 perform	 extract,	 transform,	 load
processes	to	extract	data	from	a	datastore,	perform	data	transformations,	and	load	the	data
back	 into	 the	 datastore.	 However,	 the	 analytic	 sandbox	 approach	 differs	 slightly;	 it
advocates	extract,	 load,	 and	 then	 transform.	 In	 this	 case,	 the	data	 is	 extracted	 in	 its	 raw
form	and	loaded	into	the	datastore,	where	analysts	can	choose	to	transform	the	data	into	a
new	 state	 or	 leave	 it	 in	 its	 original,	 raw	 condition.	The	 reason	 for	 this	 approach	 is	 that
there	is	significant	value	in	preserving	the	raw	data	and	including	it	in	the	sandbox	before
any	transformations	take	place.

For	 instance,	consider	an	analysis	 for	 fraud	detection	on	credit	card	usage.	Many	 times,
outliers	 in	 this	 data	 population	 can	 represent	 higher-risk	 transactions	 that	 may	 be
indicative	 of	 fraudulent	 credit	 card	 activity.	 Using	 ETL,	 these	 outliers	 may	 be
inadvertently	 filtered	 out	 or	 transformed	 and	 cleaned	 before	 being	 loaded	 into	 the
datastore.	 In	 this	 case,	 the	 very	 data	 that	 would	 be	 needed	 to	 evaluate	 instances	 of

fraudulent	activity	would	be	inadvertently	cleansed,	preventing	the	kind	of	analysis	that	a
team	would	want	to	do.

Following	the	ELT	approach	gives	the	team	access	to	clean	data	to	analyze	after	the	data
has	 been	 loaded	 into	 the	 database	 and	 gives	 access	 to	 the	 data	 in	 its	 original	 form	 for
finding	hidden	nuances	 in	 the	data.	This	approach	 is	part	of	 the	 reason	 that	 the	analytic
sandbox	can	quickly	grow	large.	The	team	may	want	clean	data	and	aggregated	data	and
may	 need	 to	 keep	 a	 copy	 of	 the	 original	 data	 to	 compare	 against	 or	 look	 for	 hidden
patterns	that	may	have	existed	in	the	data	before	the	cleaning	stage.	This	process	can	be
summarized	as	ETLT	 to	 reflect	 the	 fact	 that	 a	 team	may	choose	 to	perform	ETL	 in	one
case	and	ELT	in	another.

Depending	on	the	size	and	number	of	the	data	sources,	the	team	may	need	to	consider	how
to	 parallelize	 the	movement	 of	 the	 datasets	 into	 the	 sandbox.	 For	 this	 purpose,	moving
large	amounts	of	data	 is	 sometimes	 referred	 to	as	Big	ETL.	The	data	movement	can	be
parallelized	by	 technologies	such	as	Hadoop	or	MapReduce,	which	will	be	explained	 in
greater	 detail	 in	Chapter	 10,	 “Advanced	Analytics—Technology	 and	Tools:	MapReduce
and	Hadoop.”	At	this	point,	keep	in	mind	that	these	technologies	can	be	used	to	perform
parallel	data	ingest	and	introduce	a	huge	number	of	files	or	datasets	in	parallel	in	a	very
short	period	of	time.	Hadoop	can	be	useful	for	data	loading	as	well	as	for	data	analysis	in
subsequent	phases.

Prior	 to	 moving	 the	 data	 into	 the	 analytic	 sandbox,	 determine	 the	 transformations	 that
need	 to	be	performed	on	 the	data.	Part	of	 this	phase	 involves	assessing	data	quality	and
structuring	 the	 datasets	 properly	 so	 they	 can	 be	 used	 for	 robust	 analysis	 in	 subsequent
phases.	In	addition,	it	is	important	to	consider	which	data	the	team	will	have	access	to	and
which	new	data	attributes	will	need	to	be	derived	in	the	data	to	enable	analysis.

As	part	of	the	ETLT	step,	it	is	advisable	to	make	an	inventory	of	the	data	and	compare	the
data	currently	available	with	datasets	the	team	needs.	Performing	this	sort	of	gap	analysis
provides	 a	 framework	 for	 understanding	which	datasets	 the	 team	can	 take	 advantage	of
today	and	where	 the	 team	needs	 to	 initiate	projects	 for	data	collection	or	access	 to	new
datasets	 currently	 unavailable.	 A	 component	 of	 this	 subphase	 involves	 extracting	 data
from	 the	 available	 sources	 and	 determining	 data	 connections	 for	 raw	 data,	 online
transaction	processing	 (OLTP)	databases,	online	analytical	processing	 (OLAP)	cubes,	or
other	data	feeds.

Application	programming	interface	(API)	is	an	increasingly	popular	way	to	access	a	data
source	 [8].	Many	websites	 and	 social	 network	 applications	now	provide	APIs	 that	 offer
access	 to	 data	 to	 support	 a	 project	 or	 supplement	 the	 datasets	 with	 which	 a	 team	 is
working.	 For	 example,	 connecting	 to	 the	 Twitter	 API	 can	 enable	 a	 team	 to	 download
millions	of	tweets	to	perform	a	project	for	sentiment	analysis	on	a	product,	a	company,	or
an	 idea.	Much	 of	 the	 Twitter	 data	 is	 publicly	 available	 and	 can	 augment	 other	 datasets
used	on	the	project.

2.3.3	Learning	About	the	Data
A	 critical	 aspect	 of	 a	 data	 science	 project	 is	 to	 become	 familiar	 with	 the	 data	 itself.
Spending	 time	 to	 learn	 the	nuances	of	 the	datasets	 provides	 context	 to	understand	what
constitutes	a	reasonable	value	and	expected	output	versus	what	is	a	surprising	finding.	In

addition,	it	is	important	to	catalog	the	data	sources	that	the	team	has	access	to	and	identify
additional	 data	 sources	 that	 the	 team	 can	 leverage	 but	 perhaps	 does	 not	 have	 access	 to
today.	Some	of	the	activities	in	this	step	may	overlap	with	the	initial	investigation	of	the
datasets	that	occur	in	the	discovery	phase.	Doing	this	activity	accomplishes	several	goals.

	
Clarifies	the	data	that	the	data	science	team	has	access	to	at	the	start	of	the	project
Highlights	gaps	by	identifying	datasets	within	an	organization	that	the	team	may	find
useful	but	may	not	be	accessible	to	the	team	today.	As	a	consequence,	this	activity
can	trigger	a	project	to	begin	building	relationships	with	the	data	owners	and	finding
ways	to	share	data	in	appropriate	ways.	In	addition,	this	activity	may	provide	an
impetus	to	begin	collecting	new	data	that	benefits	the	organization	or	a	specific	long-
term	project.
Identifies	datasets	outside	the	organization	that	may	be	useful	to	obtain,	through	open
APIs,	data	sharing,	or	purchasing	data	to	supplement	already	existing	datasets

Table	2.1	demonstrates	one	way	to	organize	this	type	of	data	inventory.

Table	2.1	Sample	Dataset	Inventory

Dataset Data	Available
and	Accessible

Data	Available,
but	not

Accessible

Data	to
Collect

Data	to	Obtain	from
Third	Party	Sources

Products	shipped •
Product	Financials •

Product	Call
Center	Data •

Live	Product
Feedback	Surveys •

Product	Sentiment
from	Social	Media •

2.3.4	Data	Conditioning
Data	 conditioning	 refers	 to	 the	 process	 of	 cleaning	 data,	 normalizing	 datasets,	 and
performing	 transformations	 on	 the	 data.	 A	 critical	 step	 within	 the	 Data	 Analytics
Lifecycle,	data	conditioning	can	involve	many	complex	steps	to	join	or	merge	datasets	or
otherwise	 get	 datasets	 into	 a	 state	 that	 enables	 analysis	 in	 further	 phases.	 Data
conditioning	 is	 often	 viewed	 as	 a	 preprocessing	 step	 for	 the	 data	 analysis	 because	 it
involves	many	operations	on	the	dataset	before	developing	models	to	process	or	analyze
the	 data.	 This	 implies	 that	 the	 data-conditioning	 step	 is	 performed	 only	 by	 IT,	 the	 data
owners,	 a	 DBA,	 or	 a	 data	 engineer.	 However,	 it	 is	 also	 important	 to	 involve	 the	 data
scientist	in	this	step	because	many	decisions	are	made	in	the	data	conditioning	phase	that
affect	subsequent	analysis.	Part	of	this	phase	involves	deciding	which	aspects	of	particular
datasets	will	be	useful	to	analyze	in	later	steps.	Because	teams	begin	forming	ideas	in	this

phase	about	which	data	to	keep	and	which	data	to	transform	or	discard,	it	is	important	to
involve	 multiple	 team	members	 in	 these	 decisions.	 Leaving	 such	 decisions	 to	 a	 single
person	 may	 cause	 teams	 to	 return	 to	 this	 phase	 to	 retrieve	 data	 that	 may	 have	 been
discarded.

As	 with	 the	 previous	 example	 of	 deciding	 which	 data	 to	 keep	 as	 it	 relates	 to	 fraud
detection	 on	 credit	 card	 usage,	 it	 is	 critical	 to	 be	 thoughtful	 about	which	 data	 the	 team
chooses	 to	 keep	 and	 which	 data	 will	 be	 discarded.	 This	 can	 have	 far-reaching
consequences	 that	will	 cause	 the	 team	 to	 retrace	previous	 steps	 if	 the	 team	discards	 too
much	of	the	data	at	too	early	a	point	in	this	process.	Typically,	data	science	teams	would
rather	 keep	 more	 data	 than	 too	 little	 data	 for	 the	 analysis.	 Additional	 questions	 and
considerations	for	the	data	conditioning	step	include	these.

	
What	are	the	data	sources?	What	are	the	target	fields	(for	example,	columns	of	the
tables)?
How	clean	is	the	data?
How	consistent	are	the	contents	and	files?	Determine	to	what	degree	the	data
contains	missing	or	inconsistent	values	and	if	the	data	contains	values	deviating	from
normal.
Assess	the	consistency	of	the	data	types.	For	instance,	if	the	team	expects	certain	data
to	be	numeric,	confirm	it	is	numeric	or	if	it	is	a	mixture	of	alphanumeric	strings	and
text.
Review	the	content	of	data	columns	or	other	inputs,	and	check	to	ensure	they	make
sense.	For	instance,	if	the	project	involves	analyzing	income	levels,	preview	the	data
to	confirm	that	the	income	values	are	positive	or	if	it	is	acceptable	to	have	zeros	or
negative	values.
Look	for	any	evidence	of	systematic	error.	Examples	include	data	feeds	from	sensors
or	other	data	sources	breaking	without	anyone	noticing,	which	causes	invalid,
incorrect,	or	missing	data	values.	In	addition,	review	the	data	to	gauge	if	the
definition	of	the	data	is	the	same	over	all	measurements.	In	some	cases,	a	data
column	is	repurposed,	or	the	column	stops	being	populated,	without	this	change
being	annotated	or	without	others	being	notified.

2.3.5	Survey	and	Visualize
After	 the	 team	 has	 collected	 and	 obtained	 at	 least	 some	 of	 the	 datasets	 needed	 for	 the
subsequent	 analysis,	 a	 useful	 step	 is	 to	 leverage	 data	 visualization	 tools	 to	 gain	 an
overview	 of	 the	 data.	 Seeing	 high-level	 patterns	 in	 the	 data	 enables	 one	 to	 understand
characteristics	 about	 the	 data	 very	 quickly.	 One	 example	 is	 using	 data	 visualization	 to
examine	data	quality,	such	as	whether	the	data	contains	many	unexpected	values	or	other
indicators	 of	 dirty	 data.	 (Dirty	 data	 will	 be	 discussed	 further	 in	 Chapter	 3.)	 Another
example	 is	 skewness,	 such	 as	 if	 the	majority	 of	 the	 data	 is	 heavily	 shifted	 toward	 one
value	or	end	of	a	continuum.

Shneiderman	[9]	is	well	known	for	his	mantra	for	visual	data	analysis	of	“overview	first,

zoom	 and	 filter,	 then	 details-on-demand.”	 This	 is	 a	 pragmatic	 approach	 to	 visual	 data
analysis.	It	enables	the	user	to	find	areas	of	interest,	zoom	and	filter	to	find	more	detailed
information	about	 a	particular	 area	of	 the	data,	 and	 then	 find	 the	detailed	data	behind	a
particular	area.	This	approach	provides	a	high-level	view	of	 the	data	and	a	great	deal	of
information	about	a	given	dataset	in	a	relatively	short	period	of	time.

When	 pursuing	 this	 approach	 with	 a	 data	 visualization	 tool	 or	 statistical	 package,	 the
following	guidelines	and	considerations	are	recommended.

	
Review	data	to	ensure	that	calculations	remained	consistent	within	columns	or	across
tables	for	a	given	data	field.	For	instance,	did	customer	lifetime	value	change	at	some
point	in	the	middle	of	data	collection?	Or	if	working	with	financials,	did	the	interest
calculation	change	from	simple	to	compound	at	the	end	of	the	year?
Does	the	data	distribution	stay	consistent	over	all	the	data?	If	not,	what	kinds	of
actions	should	be	taken	to	address	this	problem?
Assess	the	granularity	of	the	data,	the	range	of	values,	and	the	level	of	aggregation	of
the	data.
Does	the	data	represent	the	population	of	interest?	For	marketing	data,	if	the	project
is	focused	on	targeting	customers	of	child-rearing	age,	does	the	data	represent	that,	or
is	it	full	of	senior	citizens	and	teenagers?
For	time-related	variables,	are	the	measurements	daily,	weekly,	monthly?	Is	that	good
enough?	Is	time	measured	in	seconds	everywhere?	Or	is	it	in	milliseconds	in	some
places?	Determine	the	level	of	granularity	of	the	data	needed	for	the	analysis,	and
assess	whether	the	current	level	of	timestamps	on	the	data	meets	that	need.
Is	the	data	standardized/normalized?	Are	the	scales	consistent?	If	not,	how	consistent
or	irregular	is	the	data?
For	geospatial	datasets,	are	state	or	country	abbreviations	consistent	across	the	data?
Are	personal	names	normalized?	English	units?	Metric	units?

These	 are	 typical	 considerations	 that	 should	 be	 part	 of	 the	 thought	 process	 as	 the	 team
evaluates	 the	datasets	 that	are	obtained	for	 the	project.	Becoming	deeply	knowledgeable
about	the	data	will	be	critical	when	it	comes	time	to	construct	and	run	models	later	in	the
process.

2.3.6	Common	Tools	for	the	Data	Preparation	Phase
Several	tools	are	commonly	used	for	this	phase:

	
Hadoop	[10]	can	perform	massively	parallel	ingest	and	custom	analysis	for	web
traffic	parsing,	GPS	location	analytics,	genomic	analysis,	and	combining	of	massive
unstructured	data	feeds	from	multiple	sources.
Alpine	Miner	[11]	provides	a	graphical	user	interface	(GUI)	for	creating	analytic
workflows,	including	data	manipulations	and	a	series	of	analytic	events	such	as
staged	data-mining	techniques	(for	example,	first	select	the	top	100	customers,	and

then	run	descriptive	statistics	and	clustering)	on	Postgres	SQL	and	other	Big	Data
sources.
OpenRefine	(formerly	called	Google	Refine)	[12]	is	“a	free,	open	source,	powerful
tool	for	working	with	messy	data.”	It	is	a	popular	GUI-based	tool	for	performing	data
transformations,	and	it’s	one	of	the	most	robust	free	tools	currently	available.
Similar	to	OpenRefine,	Data	Wrangler	[13]	is	an	interactive	tool	for	data	cleaning
and	transformation.	Wrangler	was	developed	at	Stanford	University	and	can	be	used
to	perform	many	transformations	on	a	given	dataset.	In	addition,	data	transformation
outputs	can	be	put	into	Java	or	Python.	The	advantage	of	this	feature	is	that	a	subset
of	the	data	can	be	manipulated	in	Wrangler	via	its	GUI,	and	then	the	same	operations
can	be	written	out	as	Java	or	Python	code	to	be	executed	against	the	full,	larger
dataset	offline	in	a	local	analytic	sandbox.

For	Phase	2,	the	team	needs	assistance	from	IT,	DBAs,	or	whoever	controls	the	Enterprise
Data	Warehouse	(EDW)	for	data	sources	the	data	science	team	would	like	to	use.

2.4	Phase	3:	Model	Planning
In	 Phase	 3,	 the	 data	 science	 team	 identifies	 candidate	 models	 to	 apply	 to	 the	 data	 for
clustering,	 classifying,	 or	 finding	 relationships	 in	 the	 data	 depending	on	 the	 goal	 of	 the
project,	 as	 shown	 in	 Figure	 2.5.	 It	 is	 during	 this	 phase	 that	 the	 team	 refers	 to	 the
hypotheses	 developed	 in	Phase	 1,	when	 they	 first	 became	 acquainted	with	 the	 data	 and
understanding	 the	 business	 problems	 or	 domain	 area.	 These	 hypotheses	 help	 the	 team
frame	 the	 analytics	 to	 execute	 in	 Phase	 4	 and	 select	 the	 right	 methods	 to	 achieve	 its
objectives.

Figure	2.5	Model	planning	phase

Some	of	the	activities	to	consider	in	this	phase	include	the	following:

	
Assess	the	structure	of	the	datasets.	The	structure	of	the	datasets	is	one	factor	that
dictates	the	tools	and	analytical	techniques	for	the	next	phase.	Depending	on	whether
the	team	plans	to	analyze	textual	data	or	transactional	data,	for	example,	different

tools	and	approaches	are	required.
Ensure	that	the	analytical	techniques	enable	the	team	to	meet	the	business	objectives
and	accept	or	reject	the	working	hypotheses.
Determine	if	the	situation	warrants	a	single	model	or	a	series	of	techniques	as	part	of
a	larger	analytic	workflow.	A	few	example	models	include	association	rules	(Chapter
5,	“Advanced	Analytical	Theory	and	Methods:	Association	Rules”)	and	logistic
regression	(Chapter	6,	“Advanced	Analytical	Theory	and	Methods:	Regression”).
Other	tools,	such	as	Alpine	Miner,	enable	users	to	set	up	a	series	of	steps	and
analyses	and	can	serve	as	a	front-end	user	interface	(UI)	for	manipulating	Big	Data
sources	in	PostgreSQL.

In	 addition	 to	 the	 considerations	 just	 listed,	 it	 is	 useful	 to	 research	 and	understand	how
other	analysts	generally	approach	a	specific	kind	of	problem.	Given	the	kind	of	data	and
resources	that	are	available,	evaluate	whether	similar,	existing	approaches	will	work	or	if
the	 team	 will	 need	 to	 create	 something	 new.	 Many	 times	 teams	 can	 get	 ideas	 from
analogous	problems	that	other	people	have	solved	in	different	industry	verticals	or	domain
areas.	 Table	 2.2	 summarizes	 the	 results	 of	 an	 exercise	 of	 this	 type,	 involving	 several
domain	areas	and	the	types	of	models	previously	used	in	a	classification	type	of	problem
after	conducting	research	on	churn	models	in	multiple	industry	verticals.	Performing	this
sort	 of	 diligence	 gives	 the	 team	 ideas	 of	 how	 others	 have	 solved	 similar	 problems	 and
presents	 the	 team	with	 a	 list	 of	 candidate	models	 to	 try	 as	 part	 of	 the	model	 planning
phase.

Table	2.2	Research	on	Model	Planning	in	Industry	Verticals

Market	Sector Analytic	Techniques/Methods	Used
Consumer

Packaged	Goods
Multiple	linear	regression,	automatic	relevance	determination

(ARD),	and	decision	tree
Retail	Banking Multiple	regression
Retail	Business Logistic	regression,	ARD,	decision	tree

Wireless	Telecom Neural	network,	decision	tree,	hierarchical	neurofuzzy	systems,	rule
evolver,	logistic	regression

2.4.1	Data	Exploration	and	Variable	Selection
Although	some	data	exploration	takes	place	in	the	data	preparation	phase,	those	activities
focus	mainly	on	data	hygiene	and	on	assessing	the	quality	of	the	data	itself.	In	Phase	3,	the
objective	of	the	data	exploration	is	to	understand	the	relationships	among	the	variables	to
inform	selection	of	the	variables	and	methods	and	to	understand	the	problem	domain.	As
with	earlier	phases	of	the	Data	Analytics	Lifecycle,	it	is	important	to	spend	time	and	focus
attention	on	this	preparatory	work	to	make	the	subsequent	phases	of	model	selection	and
execution	easier	and	more	efficient.	A	common	way	 to	conduct	 this	 step	 involves	using
tools	to	perform	data	visualizations.	Approaching	the	data	exploration	in	this	way	aids	the
team	in	previewing	the	data	and	assessing	relationships	between	variables	at	a	high	level.

In	many	cases,	stakeholders	and	subject	matter	experts	have	instincts	and	hunches	about

what	 the	data	 science	 team	should	be	considering	and	analyzing.	Likely,	 this	group	had
some	hypothesis	 that	 led	 to	 the	 genesis	 of	 the	 project.	Often,	 stakeholders	 have	 a	 good
grasp	of	the	problem	and	domain,	although	they	may	not	be	aware	of	the	subtleties	within
the	data	or	 the	model	needed	 to	accept	or	 reject	a	hypothesis.	Other	 times,	 stakeholders
may	 be	 correct,	 but	 for	 the	 wrong	 reasons	 (for	 instance,	 they	 may	 be	 correct	 about	 a
correlation	 that	exists	but	 infer	an	 incorrect	 reason	for	 the	correlation).	Meanwhile,	data
scientists	have	to	approach	problems	with	an	unbiased	mind-set	and	be	ready	to	question
all	assumptions.

As	 the	 team	 begins	 to	 question	 the	 incoming	 assumptions	 and	 test	 initial	 ideas	 of	 the
project	 sponsors	 and	 stakeholders,	 it	 needs	 to	 consider	 the	 inputs	 and	 data	 that	will	 be
needed,	 and	 then	 it	must	 examine	whether	 these	 inputs	 are	 actually	 correlated	with	 the
outcomes	 that	 the	 team	plans	 to	predict	or	 analyze.	Some	methods	and	 types	of	models
will	 handle	 correlated	 variables	 better	 than	 others.	 Depending	 on	 what	 the	 team	 is
attempting	 to	 solve,	 it	may	need	 to	 consider	 an	 alternate	method,	 reduce	 the	number	of
data	inputs,	or	transform	the	inputs	to	allow	the	team	to	use	the	best	method	for	a	given
business	 problem.	 Some	 of	 these	 techniques	will	 be	 explored	 further	 in	 Chapter	 3	 and
Chapter	6.

The	key	to	this	approach	is	to	aim	for	capturing	the	most	essential	predictors	and	variables
rather	 than	 considering	 every	 possible	 variable	 that	 people	 think	 may	 influence	 the
outcome.	 Approaching	 the	 problem	 in	 this	 manner	 requires	 iterations	 and	 testing	 to
identify	the	most	essential	variables	for	the	intended	analyses.	The	team	should	plan	to	test
a	 range	 of	 variables	 to	 include	 in	 the	model	 and	 then	 focus	 on	 the	most	 important	 and
influential	variables.

If	the	team	plans	to	run	regression	analyses,	identify	the	candidate	predictors	and	outcome
variables	of	the	model.	Plan	to	create	variables	that	determine	outcomes	but	demonstrate	a
strong	relationship	 to	 the	outcome	rather	 than	 to	 the	other	 input	variables.	This	 includes
remaining	 vigilant	 for	 problems	 such	 as	 serial	 correlation,	 multicollinearity,	 and	 other
typical	 data	 modeling	 challenges	 that	 interfere	 with	 the	 validity	 of	 these	 models.
Sometimes	 these	 issues	 can	 be	 avoided	 simply	 by	 looking	 at	 ways	 to	 reframe	 a	 given
problem.	In	addition,	sometimes	determining	correlation	is	all	that	is	needed	(“black	box
prediction”),	 and	 in	 other	 cases,	 the	 objective	 of	 the	 project	 is	 to	 understand	 the	 causal
relationship	better.	In	the	latter	case,	the	team	wants	the	model	to	have	explanatory	power
and	 needs	 to	 forecast	 or	 stress	 test	 the	 model	 under	 a	 variety	 of	 situations	 and	 with
different	datasets.

2.4.2	Model	Selection
In	the	model	selection	subphase,	the	team’s	main	goal	is	to	choose	an	analytical	technique,
or	a	short	list	of	candidate	techniques,	based	on	the	end	goal	of	the	project.	For	the	context
of	this	book,	a	model	is	discussed	in	general	terms.	In	this	case,	a	model	simply	refers	to
an	 abstraction	 from	 reality.	One	 observes	 events	 happening	 in	 a	 real-world	 situation	 or
with	 live	data	and	attempts	 to	construct	models	 that	 emulate	 this	behavior	with	a	 set	of
rules	 and	 conditions.	 In	 the	 case	 of	machine	 learning	 and	 data	mining,	 these	 rules	 and
conditions	 are	 grouped	 into	 several	 general	 sets	 of	 techniques,	 such	 as	 classification,
association	rules,	and	clustering.	When	reviewing	this	list	of	types	of	potential	models,	the
team	can	winnow	down	the	list	to	several	viable	models	to	try	to	address	a	given	problem.

More	 details	 on	matching	 the	 right	models	 to	 common	 types	 of	 business	 problems	 are
provided	 in	 Chapter	 3	 and	 Chapter	 4,	 “Advanced	 Analytical	 Theory	 and	 Methods:
Clustering.”

An	additional	consideration	in	this	area	for	dealing	with	Big	Data	involves	determining	if
the	team	will	be	using	techniques	that	are	best	suited	for	structured	data,	unstructured	data,
or	 a	 hybrid	 approach.	 For	 instance,	 the	 team	 can	 leverage	 MapReduce	 to	 analyze
unstructured	 data,	 as	 highlighted	 in	 Chapter	 10.	 Lastly,	 the	 team	 should	 take	 care	 to
identify	and	document	the	modeling	assumptions	it	is	making	as	it	chooses	and	constructs
preliminary	models.

Typically,	 teams	create	 the	 initial	models	using	a	statistical	software	package	such	as	R,
SAS,	or	Matlab.	Although	these	tools	are	designed	for	data	mining	and	machine	learning
algorithms,	they	may	have	limitations	when	applying	the	models	to	very	large	datasets,	as
is	common	with	Big	Data.	As	such,	the	team	may	consider	redesigning	these	algorithms	to
run	in	the	database	itself	during	the	pilot	phase	mentioned	in	Phase	6.

The	team	can	move	to	the	model	building	phase	once	it	has	a	good	idea	about	the	type	of
model	 to	 try	 and	 the	 team	 has	 gained	 enough	 knowledge	 to	 refine	 the	 analytics	 plan.
Advancing	 from	 this	 phase	 requires	 a	 general	 methodology	 for	 the	 analytical	 model,	 a
solid	understanding	of	the	variables	and	techniques	to	use,	and	a	description	or	diagram	of
the	analytic	workflow.

2.4.3	Common	Tools	for	the	Model	Planning	Phase
Many	 tools	 are	 available	 to	 assist	 in	 this	 phase.	Here	 are	 several	 of	 the	more	 common
ones:

	
R	[14]	has	a	complete	set	of	modeling	capabilities	and	provides	a	good	environment
for	building	interpretive	models	with	high-quality	code.	In	addition,	it	has	the	ability
to	interface	with	databases	via	an	ODBC	connection	and	execute	statistical	tests	and
analyses	against	Big	Data	via	an	open	source	connection.	These	two	factors	make	R
well	suited	to	performing	statistical	tests	and	analytics	on	Big	Data.	As	of	this
writing,	R	contains	nearly	5,000	packages	for	data	analysis	and	graphical
representation.	New	packages	are	posted	frequently,	and	many	companies	are
providing	value-add	services	for	R	(such	as	training,	instruction,	and	best	practices),
as	well	as	packaging	it	in	ways	to	make	it	easier	to	use	and	more	robust.	This
phenomenon	is	similar	to	what	happened	with	Linux	in	the	late	1980s	and	early
1990s,	when	companies	appeared	to	package	and	make	Linux	easier	for	companies	to
consume	and	deploy.	Use	R	with	file	extracts	for	offline	analysis	and	optimal
performance,	and	use	RODBC	connections	for	dynamic	queries	and	faster
development.
SQL	Analysis	services	[15]	can	perform	in-database	analytics	of	common	data
mining	functions,	involved	aggregations,	and	basic	predictive	models.
SAS/ACCESS	[16]	provides	integration	between	SAS	and	the	analytics	sandbox	via
multiple	data	connectors	such	as	OBDC,	JDBC,	and	OLE	DB.	SAS	itself	is	generally
used	on	file	extracts,	but	with	SAS/ACCESS,	users	can	connect	to	relational

databases	(such	as	Oracle	or	Teradata)	and	data	warehouse	appliances	(such	as
Greenplum	or	Aster),	files,	and	enterprise	applications	(such	as	SAP	and
Salesforce.com).

http://Salesforce.com

2.5	Phase	4:	Model	Building
In	 Phase	 4,	 the	 data	 science	 team	 needs	 to	 develop	 datasets	 for	 training,	 testing,	 and
production	 purposes.	 These	 datasets	 enable	 the	 data	 scientist	 to	 develop	 the	 analytical
model	and	train	it	(“training	data”),	while	holding	aside	some	of	the	data	(“hold-out	data”
or	“test	data”)	for	testing	the	model.	(These	topics	are	addressed	in	more	detail	in	Chapter
3.)	 During	 this	 process,	 it	 is	 critical	 to	 ensure	 that	 the	 training	 and	 test	 datasets	 are
sufficiently	robust	for	the	model	and	analytical	techniques.	A	simple	way	to	think	of	these
datasets	is	to	view	the	training	dataset	for	conducting	the	initial	experiments	and	the	test
sets	for	validating	an	approach	once	the	initial	experiments	and	models	have	been	run.

In	the	model	building	phase,	shown	in	Figure	2.6,	an	analytical	model	is	developed	and	fit
on	 the	 training	 data	 and	 evaluated	 (scored)	 against	 the	 test	 data.	 The	 phases	 of	 model
planning	and	model	building	can	overlap	quite	a	bit,	and	in	practice	one	can	iterate	back
and	forth	between	the	two	phases	for	a	while	before	settling	on	a	final	model.

Figure	2.6	Model	building	phase

Although	 the	modeling	 techniques	 and	 logic	 required	 to	 develop	models	 can	 be	 highly
complex,	 the	 actual	 duration	 of	 this	 phase	 can	 be	 short	 compared	 to	 the	 time	 spent
preparing	 the	 data	 and	 defining	 the	 approaches.	 In	 general,	 plan	 to	 spend	 more	 time
preparing	and	 learning	 the	data	 (Phases	1–2)	 and	crafting	 a	presentation	of	 the	 findings
(Phase	5).	Phases	3	 and	4	 tend	 to	move	more	quickly,	 although	 they	are	more	complex
from	a	conceptual	standpoint.

As	part	of	this	phase,	the	data	science	team	needs	to	execute	the	models	defined	in	Phase
3.

During	this	phase,	users	run	models	from	analytical	software	packages,	such	as	R	or	SAS,
on	 file	 extracts	 and	 small	 datasets	 for	 testing	 purposes.	 On	 a	 small	 scale,	 assess	 the
validity	 of	 the	model	 and	 its	 results.	 For	 instance,	 determine	 if	 the	model	 accounts	 for
most	 of	 the	 data	 and	 has	 robust	 predictive	 power.	 At	 this	 point,	 refine	 the	 models	 to
optimize	the	results,	such	as	by	modifying	variable	inputs	or	reducing	correlated	variables
where	 appropriate.	 In	 Phase	 3,	 the	 team	 may	 have	 had	 some	 knowledge	 of	 correlated
variables	 or	 problematic	 data	 attributes,	 which	 will	 be	 confirmed	 or	 denied	 once	 the
models	are	actually	executed.	When	 immersed	 in	 the	details	of	constructing	models	and
transforming	data,	many	small	decisions	are	often	made	about	the	data	and	the	approach
for	 the	 modeling.	 These	 details	 can	 be	 easily	 forgotten	 once	 the	 project	 is	 completed.
Therefore,	 it	 is	 vital	 to	 record	 the	 results	 and	 logic	 of	 the	model	 during	 this	 phase.	 In
addition,	one	must	 take	care	 to	 record	any	operating	assumptions	 that	were	made	 in	 the
modeling	process	regarding	the	data	or	the	context.

Creating	 robust	 models	 that	 are	 suitable	 to	 a	 specific	 situation	 requires	 thoughtful
consideration	 to	 ensure	 the	 models	 being	 developed	 ultimately	 meet	 the	 objectives
outlined	in	Phase	1.	Questions	to	consider	include	these:

	
Does	the	model	appear	valid	and	accurate	on	the	test	data?
Does	the	model	output/behavior	make	sense	to	the	domain	experts?	That	is,	does	it
appear	as	if	the	model	is	giving	answers	that	make	sense	in	this	context?
Do	the	parameter	values	of	the	fitted	model	make	sense	in	the	context	of	the	domain?
Is	the	model	sufficiently	accurate	to	meet	the	goal?
Does	the	model	avoid	intolerable	mistakes?	Depending	on	context,	false	positives
may	be	more	serious	or	less	serious	than	false	negatives,	for	instance.	(False	positives
and	false	negatives	are	discussed	further	in	Chapter	3	and	Chapter	7,	“Advanced
Analytical	Theory	and	Methods:	Classification.”)
Are	more	data	or	more	inputs	needed?	Do	any	of	the	inputs	need	to	be	transformed	or
eliminated?
Will	the	kind	of	model	chosen	support	the	runtime	requirements?
Is	a	different	form	of	the	model	required	to	address	the	business	problem?	If	so,	go
back	to	the	model	planning	phase	and	revise	the	modeling	approach.

Once	the	data	science	team	can	evaluate	either	if	the	model	is	sufficiently	robust	to	solve
the	problem	or	if	the	team	has	failed,	it	can	move	to	the	next	phase	in	the	Data	Analytics

Lifecycle.

2.5.1	Common	Tools	for	the	Model	Building	Phase
There	 are	 many	 tools	 available	 to	 assist	 in	 this	 phase,	 focused	 primarily	 on	 statistical
analysis	or	data	mining	software.	Common	tools	in	this	space	include,	but	are	not	limited
to,	the	following:

	
Commercial	Tools:

SAS	Enterprise	Miner	[17]	allows	users	to	run	predictive	and	descriptive
models	based	on	large	volumes	of	data	from	across	the	enterprise.	It
interoperates	with	other	large	data	stores,	has	many	partnerships,	and	is	built	for
enterprise-level	computing	and	analytics.
SPSS	Modeler	[18]	(provided	by	IBM	and	now	called	IBM	SPSS	Modeler)
offers	methods	to	explore	and	analyze	data	through	a	GUI.
Matlab	[19]	provides	a	high-level	language	for	performing	a	variety	of	data
analytics,	algorithms,	and	data	exploration.
Alpine	Miner	[11]	provides	a	GUI	front	end	for	users	to	develop	analytic
workflows	and	interact	with	Big	Data	tools	and	platforms	on	the	back	end.
STATISTICA	[20]	and	Mathematica	[21]	are	also	popular	and	well-regarded
data	mining	and	analytics	tools.

Free	or	Open	Source	tools:
R	and	PL/R	[14]	R	was	described	earlier	in	the	model	planning	phase,	and
PL/R	is	a	procedural	language	for	PostgreSQL	with	R.	Using	this	approach
means	that	R	commands	can	be	executed	in	database.	This	technique	provides
higher	performance	and	is	more	scalable	than	running	R	in	memory.
Octave	[22],	a	free	software	programming	language	for	computational
modeling,	has	some	of	the	functionality	of	Matlab.	Because	it	is	freely	available,
Octave	is	used	in	major	universities	when	teaching	machine	learning.
WEKA	[23]	is	a	free	data	mining	software	package	with	an	analytic	workbench.
The	functions	created	in	WEKA	can	be	executed	within	Java	code.
Python	is	a	programming	language	that	provides	toolkits	for	machine	learning
and	analysis,	such	as	scikit-learn,	numpy,	scipy,	pandas,	and	related	data
visualization	using	matplotlib.
SQL	in-database	implementations,	such	as	MADlib	[24],	provide	an	alterative
to	in-memory	desktop	analytical	tools.	MADlib	provides	an	open-source
machine	learning	library	of	algorithms	that	can	be	executed	in-database,	for
PostgreSQL	or	Greenplum.

2.6	Phase	5:	Communicate	Results
After	executing	the	model,	the	team	needs	to	compare	the	outcomes	of	the	modeling	to	the
criteria	 established	 for	 success	 and	 failure.	 In	 Phase	 5,	 shown	 in	 Figure	 2.7,	 the	 team
considers	how	best	 to	articulate	the	findings	and	outcomes	to	the	various	team	members
and	 stakeholders,	 taking	 into	 account	 caveats,	 assumptions,	 and	 any	 limitations	 of	 the
results.	Because	the	presentation	is	often	circulated	within	an	organization,	it	is	critical	to
articulate	the	results	properly	and	position	the	findings	in	a	way	that	is	appropriate	for	the
audience.

Figure	2.7	Communicate	results	phase

As	part	of	Phase	5,	the	team	needs	to	determine	if	it	succeeded	or	failed	in	its	objectives.
Many	times	people	do	not	want	to	admit	to	failing,	but	in	this	instance	failure	should	not
be	considered	as	a	true	failure,	but	rather	as	a	failure	of	the	data	to	accept	or	reject	a	given
hypothesis	adequately.	This	concept	can	be	counterintuitive	for	those	who	have	been	told
their	whole	 careers	 not	 to	 fail.	However,	 the	key	 is	 to	 remember	 that	 the	 team	must	 be

rigorous	 enough	 with	 the	 data	 to	 determine	 whether	 it	 will	 prove	 or	 disprove	 the
hypotheses	outlined	in	Phase	1	(discovery).	Sometimes	teams	have	only	done	a	superficial
analysis,	which	is	not	robust	enough	to	accept	or	reject	a	hypothesis.	Other	times,	teams
perform	very	robust	analysis	and	are	searching	for	ways	to	show	results,	even	when	results
may	not	be	there.	It	is	important	to	strike	a	balance	between	these	two	extremes	when	it
comes	to	analyzing	data	and	being	pragmatic	in	terms	of	showing	real-world	results.

When	conducting	this	assessment,	determine	if	the	results	are	statistically	significant	and
valid.	If	they	are,	identify	the	aspects	of	the	results	that	stand	out	and	may	provide	salient
findings	when	it	comes	time	to	communicate	them.	If	the	results	are	not	valid,	think	about
adjustments	that	can	be	made	to	refine	and	iterate	on	the	model	to	make	it	valid.	During
this	step,	assess	the	results	and	identify	which	data	points	may	have	been	surprising	and
which	were	 in	 line	with	 the	hypotheses	 that	were	developed	 in	Phase	1.	Comparing	 the
actual	results	to	the	ideas	formulated	early	on	produces	additional	ideas	and	insights	that
would	 have	 been	missed	 if	 the	 team	had	 not	 taken	 time	 to	 formulate	 initial	 hypotheses
early	in	the	process.

By	 this	 time,	 the	 team	 should	 have	 determined	 which	 model	 or	 models	 address	 the
analytical	challenge	in	the	most	appropriate	way.	In	addition,	the	team	should	have	ideas
of	 some	 of	 the	 findings	 as	 a	 result	 of	 the	 project.	 The	 best	 practice	 in	 this	 phase	 is	 to
record	all	 the	findings	and	 then	select	 the	 three	most	significant	ones	 that	can	be	shared
with	 the	stakeholders.	 In	addition,	 the	 team	needs	 to	 reflect	on	 the	 implications	of	 these
findings	and	measure	 the	business	value.	Depending	on	what	emerged	as	a	 result	of	 the
model,	the	team	may	need	to	spend	time	quantifying	the	business	impact	of	the	results	to
help	 prepare	 for	 the	 presentation	 and	 demonstrate	 the	 value	 of	 the	 findings.	 Doug
Hubbard’s	work	[6]	offers	insights	on	how	to	assess	intangibles	in	business	and	quantify
the	value	of	seemingly	unmeasurable	things.

Now	that	the	team	has	run	the	model,	completed	a	thorough	discovery	phase,	and	learned
a	great	deal	about	the	datasets,	reflect	on	the	project	and	consider	what	obstacles	were	in
the	 project	 and	what	 can	 be	 improved	 in	 the	 future.	Make	 recommendations	 for	 future
work	or	improvements	to	existing	processes,	and	consider	what	each	of	the	team	members
and	 stakeholders	 needs	 to	 fulfill	 her	 responsibilities.	 For	 instance,	 sponsors	 must
champion	 the	 project.	 Stakeholders	 must	 understand	 how	 the	 model	 affects	 their
processes.	 (For	example,	 if	 the	 team	has	created	a	model	 to	predict	customer	churn,	 the
Marketing	team	must	understand	how	to	use	the	churn	model	predictions	in	planning	their
interventions.)	Production	engineers	need	to	operationalize	 the	work	 that	has	been	done.
In	 addition,	 this	 is	 the	 phase	 to	 underscore	 the	 business	 benefits	 of	 the	work	 and	begin
making	the	case	to	implement	the	logic	into	a	live	production	environment.

As	 a	 result	 of	 this	 phase,	 the	 team	 will	 have	 documented	 the	 key	 findings	 and	 major
insights	derived	from	the	analysis.	The	deliverable	of	this	phase	will	be	the	most	visible
portion	 of	 the	 process	 to	 the	 outside	 stakeholders	 and	 sponsors,	 so	 take	 care	 to	 clearly
articulate	 the	results,	methodology,	and	business	value	of	 the	findings.	More	details	will
be	provided	about	data	visualization	tools	and	references	in	Chapter	12,	“The	Endgame,	or
Putting	It	All	Together.”

2.7	Phase	6:	Operationalize
In	 the	 final	 phase,	 the	 team	communicates	 the	benefits	 of	 the	project	more	broadly	 and
sets	up	a	pilot	project	to	deploy	the	work	in	a	controlled	way	before	broadening	the	work
to	a	 full	 enterprise	or	 ecosystem	of	users.	 In	Phase	4,	 the	 team	scored	 the	model	 in	 the
analytics	 sandbox.	 Phase	 6,	 shown	 in	 Figure	 2.8,	 represents	 the	 first	 time	 that	 most
analytics	teams	approach	deploying	the	new	analytical	methods	or	models	in	a	production
environment.	Rather	than	deploying	these	models	immediately	on	a	wide-scale	basis,	the
risk	 can	 be	 managed	 more	 effectively	 and	 the	 team	 can	 learn	 by	 undertaking	 a	 small
scope,	 pilot	 deployment	 before	 a	wide-scale	 rollout.	 This	 approach	 enables	 the	 team	 to
learn	 about	 the	 performance	 and	 related	 constraints	 of	 the	 model	 in	 a	 production
environment	on	a	small	scale	and	make	adjustments	before	a	full	deployment.	During	the
pilot	project,	the	team	may	need	to	consider	executing	the	algorithm	in	the	database	rather
than	with	in-memory	tools	such	as	R	because	the	run	time	is	significantly	faster	and	more
efficient	than	running	in-memory,	especially	on	larger	datasets.

Figure	2.8	Model	operationalize	phase

While	 scoping	 the	 effort	 involved	 in	 conducting	 a	 pilot	 project,	 consider	 running	 the
model	 in	 a	 production	 environment	 for	 a	 discrete	 set	 of	 products	 or	 a	 single	 line	 of
business,	which	 tests	 the	model	 in	a	 live	setting.	This	allows	 the	 team	to	 learn	 from	the
deployment	 and	 make	 any	 needed	 adjustments	 before	 launching	 the	 model	 across	 the
enterprise.	Be	aware	that	this	phase	can	bring	in	a	new	set	of	team	members—usually	the
engineers	 responsible	 for	 the	production	environment	who	have	a	new	set	of	 issues	and
concerns	beyond	those	of	the	core	project	team.	This	technical	group	needs	to	ensure	that
running	the	model	fits	smoothly	into	the	production	environment	and	that	the	model	can
be	integrated	into	related	business	processes.

Part	of	the	operationalizing	phase	includes	creating	a	mechanism	for	performing	ongoing
monitoring	 of	 model	 accuracy	 and,	 if	 accuracy	 degrades,	 finding	 ways	 to	 retrain	 the
model.	 If	 feasible,	 design	 alerts	 for	when	 the	model	 is	 operating	 “out-of-bounds.”	 This
includes	situations	when	 the	 inputs	are	beyond	 the	 range	 that	 the	model	was	 trained	on,
which	may	 cause	 the	 outputs	 of	 the	model	 to	 be	 inaccurate	 or	 invalid.	 If	 this	 begins	 to
happen	regularly,	the	model	needs	to	be	retrained	on	new	data.

Often,	analytical	projects	yield	new	insights	about	a	business,	a	problem,	or	an	idea	that
people	may	 have	 taken	 at	 face	 value	 or	 thought	was	 impossible	 to	 explore.	 Four	main
deliverables	 can	 be	 created	 to	 meet	 the	 needs	 of	 most	 stakeholders.	 This	 approach	 for
developing	the	four	deliverables	is	discussed	in	greater	detail	in	Chapter	12.

Figure	 2.9	 portrays	 the	 key	 outputs	 for	 each	 of	 the	 main	 stakeholders	 of	 an	 analytics
project	and	what	they	usually	expect	at	the	conclusion	of	a	project.

	
Business	User	typically	tries	to	determine	the	benefits	and	implications	of	the
findings	to	the	business.
Project	Sponsor	typically	asks	questions	related	to	the	business	impact	of	the
project,	the	risks	and	return	on	investment	(ROI),	and	the	way	the	project	can	be
evangelized	within	the	organization	(and	beyond).
Project	Manager	needs	to	determine	if	the	project	was	completed	on	time	and
within	budget	and	how	well	the	goals	were	met.
Business	Intelligence	Analyst	needs	to	know	if	the	reports	and	dashboards	he
manages	will	be	impacted	and	need	to	change.
Data	Engineer	and	Database	Administrator	(DBA)	typically	need	to	share	their
code	from	the	analytics	project	and	create	a	technical	document	on	how	to	implement
it.
Data	Scientist	needs	to	share	the	code	and	explain	the	model	to	her	peers,	managers,
and	other	stakeholders.

Figure	2.9	Key	outputs	from	a	successful	analytics	project

Although	 these	 seven	 roles	 represent	 many	 interests	 within	 a	 project,	 these	 interests
usually	overlap,	and	most	of	them	can	be	met	with	four	main	deliverables.

	
Presentation	for	project	sponsors:	This	contains	high-level	takeaways	for	executive
level	stakeholders,	with	a	few	key	messages	to	aid	their	decision-making	process.
Focus	on	clean,	easy	visuals	for	the	presenter	to	explain	and	for	the	viewer	to	grasp.
Presentation	for	analysts,	which	describes	business	process	changes	and	reporting
changes.	Fellow	data	scientists	will	want	the	details	and	are	comfortable	with
technical	graphs	(such	as	Receiver	Operating	Characteristic	[ROC]	curves,	density
plots,	and	histograms	shown	in	Chapter	3	and	Chapter	7).
Code	for	technical	people.
Technical	specifications	of	implementing	the	code.

As	 a	 general	 rule,	 the	more	 executive	 the	 audience,	 the	more	 succinct	 the	 presentation
needs	 to	be.	Most	 executive	 sponsors	 attend	many	briefings	 in	 the	course	of	 a	day	or	 a
week.	Ensure	that	the	presentation	gets	to	the	point	quickly	and	frames	the	results	in	terms
of	value	to	the	sponsor’s	organization.	For	instance,	if	the	team	is	working	with	a	bank	to
analyze	cases	of	credit	card	fraud,	highlight	the	frequency	of	fraud,	the	number	of	cases	in
the	past	month	or	year,	and	the	cost	or	revenue	impact	to	the	bank	(or	focus	on	the	reverse
—how	much	more	 revenue	 the	bank	could	gain	 if	 it	 addresses	 the	 fraud	problem).	This
demonstrates	 the	 business	 impact	 better	 than	 deep	 dives	 on	 the	 methodology.	 The

presentation	 needs	 to	 include	 supporting	 information	 about	 analytical	methodology	 and
data	 sources,	 but	 generally	 only	 as	 supporting	 detail	 or	 to	 ensure	 the	 audience	 has
confidence	in	the	approach	that	was	taken	to	analyze	the	data.

When	presenting	to	other	audiences	with	more	quantitative	backgrounds,	focus	more	time
on	the	methodology	and	findings.	In	these	instances,	 the	team	can	be	more	expansive	in
describing	the	outcomes,	methodology,	and	analytical	experiment	with	a	peer	group.	This
audience	will	be	more	interested	in	the	techniques,	especially	if	the	team	developed	a	new
way	of	processing	or	analyzing	data	that	can	be	reused	in	the	future	or	applied	to	similar
problems.	In	addition,	use	imagery	or	data	visualization	when	possible.	Although	it	may
take	 more	 time	 to	 develop	 imagery,	 people	 tend	 to	 remember	 mental	 pictures	 to
demonstrate	 a	 point	 more	 than	 long	 lists	 of	 bullets	 [25].	 Data	 visualization	 and
presentations	are	discussed	further	in	Chapter	12.

2.8	Case	Study:	Global	Innovation	Network	and	Analysis	(GINA)
EMC’s	 Global	 Innovation	 Network	 and	 Analytics	 (GINA)	 team	 is	 a	 group	 of	 senior
technologists	 located	 in	 centers	 of	 excellence	 (COEs)	 around	 the	 world.	 This	 team’s
charter	 is	 to	 engage	 employees	 across	 global	 COEs	 to	 drive	 innovation,	 research,	 and
university	partnerships.	In	2012,	a	newly	hired	director	wanted	to	improve	these	activities
and	provide	 a	mechanism	 to	 track	 and	 analyze	 the	 related	 information.	 In	 addition,	 this
team	wanted	 to	 create	more	 robust	mechanisms	 for	 capturing	 the	 results	 of	 its	 informal
conversations	 with	 other	 thought	 leaders	 within	 EMC,	 in	 academia,	 or	 in	 other
organizations,	which	could	later	be	mined	for	insights.

The	GINA	team	thought	its	approach	would	provide	a	means	to	share	ideas	globally	and
increase	knowledge	sharing	among	GINA	members	who	may	be	separated	geographically.
It	planned	to	create	a	data	repository	containing	both	structured	and	unstructured	data	to
accomplish	three	main	goals.

	
Store	formal	and	informal	data.
Track	research	from	global	technologists.
Mine	the	data	for	patterns	and	insights	to	improve	the	team’s	operations	and	strategy.

The	 GINA	 case	 study	 provides	 an	 example	 of	 how	 a	 team	 applied	 the	 Data	 Analytics
Lifecycle	to	analyze	innovation	data	at	EMC.	Innovation	is	typically	a	difficult	concept	to
measure,	 and	 this	 team	wanted	 to	 look	 for	ways	 to	 use	 advanced	 analytical	methods	 to
identify	key	innovators	within	the	company.

2.8.1	Phase	1:	Discovery
In	the	GINA	project’s	discovery	phase,	the	team	began	identifying	data	sources.	Although
GINA	was	a	group	of	technologists	skilled	in	many	different	aspects	of	engineering,	it	had
some	data	and	ideas	about	what	it	wanted	to	explore	but	lacked	a	formal	team	that	could
perform	these	analytics.	After	consulting	with	various	experts	including	Tom	Davenport,	a
noted	 expert	 in	 analytics	 at	 Babson	 College,	 and	 Peter	 Gloor,	 an	 expert	 in	 collective
intelligence	 and	 creator	 of	CoIN	 (Collaborative	 Innovation	Networks)	 at	MIT,	 the	 team
decided	to	crowdsource	the	work	by	seeking	volunteers	within	EMC.

Here	is	a	list	of	how	the	various	roles	on	the	working	team	were	fulfilled.

	
Business	User,	Project	Sponsor,	Project	Manager:	Vice	President	from	Office	of
the	CTO
Business	Intelligence	Analyst:	Representatives	from	IT
Data	Engineer	and	Database	Administrator	(DBA):	Representatives	from	IT
Data	Scientist:	Distinguished	Engineer,	who	also	developed	the	social	graphs	shown
in	the	GINA	case	study

The	 project	 sponsor’s	 approach	 was	 to	 leverage	 social	 media	 and	 blogging	 [26]	 to

accelerate	the	collection	of	innovation	and	research	data	worldwide	and	to	motivate	teams
of	“volunteer”	data	scientists	at	worldwide	locations.	Given	that	he	lacked	a	formal	team,
he	needed	 to	be	 resourceful	about	 finding	people	who	were	both	capable	and	willing	 to
volunteer	their	time	to	work	on	interesting	problems.	Data	scientists	tend	to	be	passionate
about	 data,	 and	 the	 project	 sponsor	was	 able	 to	 tap	 into	 this	 passion	 of	 highly	 talented
people	to	accomplish	challenging	work	in	a	creative	way.

The	data	for	the	project	fell	into	two	main	categories.	The	first	category	represented	five
years	 of	 idea	 submissions	 from	 EMC’s	 internal	 innovation	 contests,	 known	 as	 the
Innovation	 Roadmap	 (formerly	 called	 the	 Innovation	 Showcase).	 The	 Innovation
Roadmap	 is	 a	 formal,	 organic	 innovation	 process	 whereby	 employees	 from	 around	 the
globe	submit	ideas	that	are	then	vetted	and	judged.	The	best	ideas	are	selected	for	further
incubation.	 As	 a	 result,	 the	 data	 is	 a	 mix	 of	 structured	 data,	 such	 as	 idea	 counts,
submission	 dates,	 inventor	 names,	 and	 unstructured	 content,	 such	 as	 the	 textual
descriptions	of	the	ideas	themselves.

The	second	category	of	data	encompassed	minutes	and	notes	representing	innovation	and
research	 activity	 from	 around	 the	world.	 This	 also	 represented	 a	mix	 of	 structured	 and
unstructured	 data.	 The	 structured	 data	 included	 attributes	 such	 as	 dates,	 names,	 and
geographic	 locations.	The	unstructured	documents	contained	 the	“who,	what,	when,	and
where”	information	that	represents	rich	data	about	knowledge	growth	and	transfer	within
the	company.	This	type	of	information	is	often	stored	in	business	silos	that	have	little	to	no
visibility	across	disparate	research	teams.

The	10	main	IHs	that	the	GINA	team	developed	were	as	follows:

	
IH1:	Innovation	activity	in	different	geographic	regions	can	be	mapped	to	corporate
strategic	directions.
IH2:	The	length	of	time	it	takes	to	deliver	ideas	decreases	when	global	knowledge
transfer	occurs	as	part	of	the	idea	delivery	process.
IH3:	Innovators	who	participate	in	global	knowledge	transfer	deliver	ideas	more
quickly	than	those	who	do	not.
IH4:	An	idea	submission	can	be	analyzed	and	evaluated	for	the	likelihood	of
receiving	funding.
IH5:	Knowledge	discovery	and	growth	for	a	particular	topic	can	be	measured	and
compared	across	geographic	regions.
IH6:	Knowledge	transfer	activity	can	identify	research-specific	boundary	spanners	in
disparate	regions.
IH7:	Strategic	corporate	themes	can	be	mapped	to	geographic	regions.
IH8:	Frequent	knowledge	expansion	and	transfer	events	reduce	the	time	it	takes	to
generate	a	corporate	asset	from	an	idea.
IH9:	Lineage	maps	can	reveal	when	knowledge	expansion	and	transfer	did	not	(or
has	not)	resulted	in	a	corporate	asset.
IH10:	Emerging	research	topics	can	be	classified	and	mapped	to	specific	ideators,

innovators,	boundary	spanners,	and	assets.

The	GINA	(IHs)	can	be	grouped	into	two	categories:

	
Descriptive	analytics	of	what	is	currently	happening	to	spark	further	creativity,
collaboration,	and	asset	generation
Predictive	analytics	to	advise	executive	management	of	where	it	should	be	investing
in	the	future

2.8.2	Phase	2:	Data	Preparation
The	team	partnered	with	its	IT	department	to	set	up	a	new	analytics	sandbox	to	store	and
experiment	on	the	data.	During	the	data	exploration	exercise,	the	data	scientists	and	data
engineers	 began	 to	 notice	 that	 certain	 data	 needed	 conditioning	 and	 normalization.	 In
addition,	the	team	realized	that	several	missing	datasets	were	critical	to	testing	some	of	the
analytic	hypotheses.

As	the	team	explored	the	data,	it	quickly	realized	that	if	it	did	not	have	data	of	sufficient
quality	or	could	not	get	good	quality	data,	it	would	not	be	able	to	perform	the	subsequent
steps	in	the	lifecycle	process.	As	a	result,	it	was	important	to	determine	what	level	of	data
quality	and	cleanliness	was	sufficient	for	the	project	being	undertaken.	In	the	case	of	the
GINA,	 the	 team	 discovered	 that	 many	 of	 the	 names	 of	 the	 researchers	 and	 people
interacting	with	the	universities	were	misspelled	or	had	leading	and	trailing	spaces	in	the
datastore.	Seemingly	small	problems	such	as	these	in	the	data	had	to	be	addressed	in	this
phase	to	enable	better	analysis	and	data	aggregation	in	subsequent	phases.

2.8.3	Phase	3:	Model	Planning
In	 the	GINA	 project,	 for	much	 of	 the	 dataset,	 it	 seemed	 feasible	 to	 use	 social	 network
analysis	 techniques	 to	 look	at	 the	networks	of	 innovators	within	EMC.	In	other	cases,	 it
was	difficult	to	come	up	with	appropriate	ways	to	test	hypotheses	due	to	the	lack	of	data.
In	 one	 case	 (IH9),	 the	 team	 made	 a	 decision	 to	 initiate	 a	 longitudinal	 study	 to	 begin
tracking	data	points	over	time	regarding	people	developing	new	intellectual	property.	This
data	collection	would	enable	the	team	to	test	the	following	two	ideas	in	the	future:

	
IH8:	Frequent	knowledge	expansion	and	transfer	events	reduce	the	amount	of	time	it
takes	to	generate	a	corporate	asset	from	an	idea.
IH9:	Lineage	maps	can	reveal	when	knowledge	expansion	and	transfer	did	not	(or
has	not)	result(ed)	in	a	corporate	asset.

For	 the	 longitudinal	study	being	proposed,	 the	 team	needed	 to	establish	goal	criteria	 for
the	study.	Specifically,	 it	needed	 to	determine	 the	end	goal	of	a	successful	 idea	 that	had
traversed	the	entire	journey.	The	parameters	related	to	the	scope	of	the	study	included	the
following	considerations:

	
Identify	the	right	milestones	to	achieve	this	goal.

Trace	how	people	move	ideas	from	each	milestone	toward	the	goal.
Once	this	is	done,	trace	ideas	that	die,	and	trace	others	that	reach	the	goal.	Compare
the	journeys	of	ideas	that	make	it	and	those	that	do	not.
Compare	the	times	and	the	outcomes	using	a	few	different	methods	(depending	on
how	the	data	is	collected	and	assembled).	These	could	be	as	simple	as	t-tests	or
perhaps	involve	different	types	of	classification	algorithms.

2.8.4	Phase	4:	Model	Building
In	Phase	4,	the	GINA	team	employed	several	analytical	methods.	This	included	work	by
the	 data	 scientist	 using	 Natural	 Language	 Processing	 (NLP)	 techniques	 on	 the	 textual
descriptions	of	 the	 Innovation	Roadmap	 ideas.	 In	addition,	he	conducted	social	network
analysis	using	R	and	RStudio,	and	then	he	developed	social	graphs	and	visualizations	of
the	 network	 of	 communications	 related	 to	 innovation	 using	 R’s	 ggplot2	 package.
Examples	of	this	work	are	shown	in	Figures	2.10	and	2.11.

Figure	2.10	Social	graph	[27]	visualization	of	idea	submitters	and	finalists

Figure	2.11	Social	graph	visualization	of	top	innovation	influencers

Figure	 2.10	 shows	 social	 graphs	 that	 portray	 the	 relationships	 between	 idea	 submitters
within	GINA.	Each	color	represents	an	innovator	from	a	different	country.	The	large	dots
with	 red	 circles	 around	 them	 represent	 hubs.	 A	 hub	 represents	 a	 person	 with	 high
connectivity	 and	 a	 high	 “betweenness”	 score.	 The	 cluster	 in	 Figure	 2.11	 contains
geographic	variety,	which	 is	 critical	 to	prove	 the	hypothesis	 about	geographic	boundary
spanners.	One	person	in	this	graph	has	an	unusually	high	score	when	compared	to	the	rest
of	the	nodes	in	the	graph.	The	data	scientist	identified	this	person	and	ran	a	query	against
his	 name	within	 the	 analytic	 sandbox.	 These	 actions	 yielded	 the	 following	 information
about	 this	 research	scientist	 (from	the	social	graph),	which	 illustrated	how	influential	he
was	within	his	business	unit	and	across	many	other	areas	of	the	company	worldwide:

	
In	2011,	he	attended	the	ACM	SIGMOD	conference,	which	is	a	top-tier	conference
on	large-scale	data	management	problems	and	databases.
He	visited	employees	in	France	who	are	part	of	the	business	unit	for	EMC’s	content
management	teams	within	Documentum	(now	part	of	the	Information	Intelligence
Group,	or	IIG).
He	presented	his	thoughts	on	the	SIGMOD	conference	at	a	virtual	brownbag	session
attended	by	three	employees	in	Russia,	one	employee	in	Cairo,	one	employee	in
Ireland,	one	employee	in	India,	three	employees	in	the	United	States,	and	one
employee	in	Israel.
In	2012,	he	attended	the	SDM	2012	conference	in	California.

On	the	same	trip	he	visited	innovators	and	researchers	at	EMC	federated	companies,
Pivotal	and	VMware.
Later	on	that	trip	he	stood	before	an	internal	council	of	technology	leaders	and
introduced	two	of	his	researchers	to	dozens	of	corporate	innovators	and	researchers.

This	 finding	 suggests	 that	 at	 least	 part	 of	 the	 initial	 hypothesis	 is	 correct;	 the	 data	 can
identify	 innovators	 who	 span	 different	 geographies	 and	 business	 units.	 The	 team	 used
Tableau	 software	 for	data	visualization	and	exploration	and	used	 the	Pivotal	Greenplum
database	as	the	main	data	repository	and	analytics	engine.

2.8.5	Phase	5:	Communicate	Results
In	Phase	 5,	 the	 team	 found	 several	ways	 to	 cull	 results	 of	 the	 analysis	 and	 identify	 the
most	 impactful	 and	 relevant	 findings.	 This	 project	 was	 considered	 successful	 in
identifying	 boundary	 spanners	 and	 hidden	 innovators.	 As	 a	 result,	 the	 CTO	 office
launched	longitudinal	studies	to	begin	data	collection	efforts	and	track	innovation	results
over	 longer	 periods	 of	 time.	 The	GINA	 project	 promoted	 knowledge	 sharing	 related	 to
innovation	and	researchers	spanning	multiple	areas	within	the	company	and	outside	of	it.
GINA	also	enabled	EMC	to	cultivate	additional	intellectual	property	that	led	to	additional
research	topics	and	provided	opportunities	to	forge	relationships	with	universities	for	joint
academic	research	in	the	fields	of	Data	Science	and	Big	Data.	In	addition,	the	project	was
accomplished	with	 a	 limited	 budget,	 leveraging	 a	 volunteer	 force	 of	 highly	 skilled	 and
distinguished	engineers	and	data	scientists.

One	of	the	key	findings	from	the	project	is	that	there	was	a	disproportionately	high	density
of	 innovators	 in	 Cork,	 Ireland.	 Each	 year,	 EMC	 hosts	 an	 innovation	 contest,	 open	 to
employees	to	submit	innovation	ideas	that	would	drive	new	value	for	the	company.	When
looking	 at	 the	 data	 in	 2011,	 15%	 of	 the	 finalists	 and	 15%	 of	 the	 winners	 were	 from
Ireland.	 These	 are	 unusually	 high	 numbers,	 given	 the	 relative	 size	 of	 the	 Cork	 COE
compared	to	other	larger	centers	in	other	parts	of	the	world.	After	further	research,	it	was
learned	that	the	COE	in	Cork,	Ireland	had	received	focused	training	in	innovation	from	an
external	 consultant,	 which	 was	 proving	 effective.	 The	 Cork	 COE	 came	 up	 with	 more
innovation	 ideas,	 and	 better	 ones,	 than	 it	 had	 in	 the	 past,	 and	 it	 was	 making	 larger
contributions	 to	 innovation	 at	 EMC.	 It	 would	 have	 been	 difficult,	 if	 not	 impossible,	 to
identify	this	cluster	of	innovators	through	traditional	methods	or	even	anecdotal,	word-of-
mouth	 feedback.	Applying	social	network	analysis	enabled	 the	 team	 to	 find	a	pocket	of
people	 within	 EMC	 who	 were	 making	 disproportionately	 strong	 contributions.	 These
findings	 were	 shared	 internally	 through	 presentations	 and	 conferences	 and	 promoted
through	social	media	and	blogs.

2.8.6	Phase	6:	Operationalize
Running	 analytics	 against	 a	 sandbox	 filled	with	 notes,	minutes,	 and	 presentations	 from
innovation	 activities	 yielded	great	 insights	 into	EMC’s	 innovation	 culture.	Key	 findings
from	the	project	include	these:

	
The	CTO	office	and	GINA	need	more	data	in	the	future,	including	a	marketing
initiative	to	convince	people	to	inform	the	global	community	on	their

innovation/research	activities.
Some	of	the	data	is	sensitive,	and	the	team	needs	to	consider	security	and	privacy
related	to	the	data,	such	as	who	can	run	the	models	and	see	the	results.
In	addition	to	running	models,	a	parallel	initiative	needs	to	be	created	to	improve
basic	Business	Intelligence	activities,	such	as	dashboards,	reporting,	and	queries	on
research	activities	worldwide.
A	mechanism	is	needed	to	continually	reevaluate	the	model	after	deployment.
Assessing	the	benefits	is	one	of	the	main	goals	of	this	stage,	as	is	defining	a	process
to	retrain	the	model	as	needed.

In	 addition	 to	 the	 actions	 and	 findings	 listed,	 the	 team	 demonstrated	 how	 analytics	 can
drive	new	insights	in	projects	that	are	traditionally	difficult	to	measure	and	quantify.	This
project	 informed	 investment	decisions	 in	university	 research	projects	by	 the	CTO	office
and	identified	hidden,	high-value	innovators.	In	addition,	the	CTO	office	developed	tools
to	 help	 submitters	 improve	 ideas	 using	 topic	 modeling	 as	 part	 of	 new	 recommender
systems	 to	 help	 idea	 submitters	 find	 similar	 ideas	 and	 refine	 their	 proposals	 for	 new
intellectual	property.

Table	 2.3	 outlines	 an	 analytics	 plan	 for	 the	 GINA	 case	 study	 example.	 Although	 this
project	 shows	 only	 three	 findings,	 there	 were	 many	 more.	 For	 instance,	 perhaps	 the
biggest	overarching	result	from	this	project	is	that	it	demonstrated,	in	a	concrete	way,	that
analytics	can	drive	new	insights	in	projects	that	deal	with	topics	that	may	seem	difficult	to
measure,	such	as	innovation.

Table	2.3	Analytic	Plan	from	the	EMC	GINA	Project

Components
of	Analytic

Plan
GINA	Case	Study

Discovery
Business
Problem
Framed

Tracking	global	knowledge	growth,	ensuring	effective	knowledge
transfer,	and	quickly	converting	it	into	corporate	assets.	Executing	on

these	three	elements	should	accelerate	innovation.

Initial
Hypotheses

An	increase	in	geographic	knowledge	transfer	improves	the	speed	of	idea
delivery.

Data Five	years	of	innovation	idea	submissions	and	history;	six	months	of
textual	notes	from	global	innovation	and	research	activities

Model
Planning
Analytic
Technique

Social	network	analysis,	social	graphs,	clustering,	and	regression	analysis

Result	and

1.	 Identified	hidden,	high-value	innovators	and	found	ways	to	share
their	knowledge

2.	 Informed	investment	decisions	in	university	research	projects

Key	Findings 3.	 Created	tools	to	help	submitters	improve	ideas	with	idea
recommender	systems

Innovation	 is	 an	 idea	 that	 every	 company	 wants	 to	 promote,	 but	 it	 can	 be	 difficult	 to
measure	 innovation	 or	 identify	 ways	 to	 increase	 innovation.	 This	 project	 explored	 this
issue	 from	 the	 standpoint	 of	 evaluating	 informal	 social	 networks	 to	 identify	 boundary
spanners	 and	 influential	 people	 within	 innovation	 subnetworks.	 In	 essence,	 this	 project
took	a	seemingly	nebulous	problem	and	applied	advanced	analytical	methods	to	tease	out
answers	using	an	objective,	fact-based	approach.

Another	 outcome	 from	 the	 project	 included	 the	 need	 to	 supplement	 analytics	 with	 a
separate	 datastore	 for	 Business	 Intelligence	 reporting,	 accessible	 to	 search
innovation/research	initiatives.	Aside	from	supporting	decision	making,	this	will	provide	a
mechanism	to	be	informed	on	discussions	and	research	happening	worldwide	among	team
members	 in	 disparate	 locations.	 Finally,	 it	 highlighted	 the	 value	 that	 can	 be	 gleaned
through	data	and	 subsequent	analysis.	Therefore,	 the	need	was	 identified	 to	 start	 formal
marketing	programs	 to	 convince	people	 to	 submit	 (or	 inform)	 the	global	 community	on
their	innovation/research	activities.	The	knowledge	sharing	was	critical.	Without	it,	GINA
would	 not	 have	 been	 able	 to	 perform	 the	 analysis	 and	 identify	 the	 hidden	 innovators
within	the	company.

Summary
This	 chapter	described	 the	Data	Analytics	Lifecycle,	which	 is	 an	approach	 to	managing
and	executing	analytical	projects.	This	approach	describes	the	process	in	six	phases.

	
1.	 Discovery
2.	 Data	preparation
3.	 Model	planning
4.	 Model	building
5.	 Communicate	results
6.	 Operationalize

Through	 these	 steps,	 data	 science	 teams	 can	 identify	 problems	 and	 perform	 rigorous
investigation	 of	 the	 datasets	 needed	 for	 in-depth	 analysis.	 As	 stated	 in	 the	 chapter,
although	much	is	written	about	the	analytical	methods,	the	bulk	of	the	time	spent	on	these
kinds	of	projects	is	spent	in	preparation—namely,	in	Phases	1	and	2	(discovery	and	data
preparation).	In	addition,	this	chapter	discussed	the	seven	roles	needed	for	a	data	science
team.	 It	 is	 critical	 that	organizations	 recognize	 that	Data	Science	 is	 a	 team	effort,	 and	a
balance	 of	 skills	 is	 needed	 to	 be	 successful	 in	 tackling	 Big	 Data	 projects	 and	 other
complex	projects	involving	data	analytics.

Exercises
	
1.	 In	which	phase	would	the	team	expect	to	invest	most	of	the	project	time?	Why?

Where	would	the	team	expect	to	spend	the	least	time?
2.	 2	What	are	the	benefits	of	doing	a	pilot	program	before	a	full-scale	rollout	of	a	new

analytical	methodology?	Discuss	this	in	the	context	of	the	mini	case	study.
3.	 What	kinds	of	tools	would	be	used	in	the	following	phases,	and	for	which	kinds	of

use	scenarios?
1.	 Phase	2:	Data	preparation
2.	 Phase	4:	Model	building

Bibliography
	
1.	 [1]	T.	H.	Davenport	and	D.	J.	Patil,	“Data	Scientist:	The	Sexiest	Job	of	the	21st

Century,”	Harvard	Business	Review,	October	2012.

2.	 [2]	J.	Manyika,	M.	Chiu,	B.	Brown,	J.	Bughin,	R.	Dobbs,	C.	Roxburgh,	and	A.	H.
Byers,	“Big	Data:	The	Next	Frontier	for	Innovation,	Competition,	and	Productivity,”
McKinsey	Global	Institute,	2011.

3.	 [3]	“Scientific	Method”	[Online].	Available:
http://en.wikipedia.org/wiki/Scientific_method.

4.	 [4]	“CRISP-DM”	[Online].	Available:
http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

5.	 [5]	T.	H.	Davenport,	J.	G.	Harris,	and	R.	Morison,	Analytics	at	Work:	Smarter
Decisions,	Better	Results,	2010,	Harvard	Business	Review	Press.

6.	 [6]	D.	W.	Hubbard,	How	to	Measure	Anything:	Finding	the	Value	of	Intangibles	in
Business,	2010,	Hoboken,	NJ:	John	Wiley	&	Sons.

7.	 [7]	J.	Cohen,	B.	Dolan,	M.	Dunlap,	J.	M.	Hellerstein	and	C.	Welton,	MAD	Skills:
New	Analysis	Practices	for	Big	Data,	Watertown,	MA	2009.

8.	 [8]	“List	of	APIs”	[Online].	Available:	http://www.programmableweb.com/apis.

9.	 [9]	B.	Shneiderman	[Online].	Available:
http://www.ifp.illinois.edu/nabhcs/abstracts/shneiderman.html.

10.	 [10]	“Hadoop”	[Online].	Available:	http://hadoop.apache.org.

11.	 [11]	“Alpine	Miner”	[Online].	Available:	http://alpinenow.com.

12.	 [12]	“OpenRefine”	[Online].	Available:	http://openrefine.org.

13.	 [13]	“Data	Wrangler”	[Online].	Available:	http://vis.stanford.edu/wrangler/.

14.	 [14]	“CRAN”	[Online].	Available:	http://cran.us.r-project.org.

15.	 [15]	“SQL”	[Online].	Available:	http://en.wikipedia.org/wiki/SQL.

16.	 [16]	a“SAS/ACCESS”	[Online].	Available:
http://www.sas.com/en_us/software/data-management/access.htm.

17.	 [17]	“SAS	Enterprise	Miner”	[Online].	Available:
http://www.sas.com/en_us/software/analytics/enterprise-miner.html.

18.	 [18]	“SPSS	Modeler”	[Online].	Available:	http://www-
03.ibm.com/software/products/en/category/business-analytics.

19.	 [19]	“Matlab”	[Online].	Available:	http://www.mathworks.com/products/matlab/.

20.	 [20]	“Statistica”	[Online].	Available:	https://www.statsoft.com.

http://en.wikipedia.org/wiki/Scientific_method
http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
http://www.programmableweb.com/apis
http://www.ifp.illinois.edu/nabhcs/abstracts/shneiderman.html
http://hadoop.apache.org
http://alpinenow.com
http://openrefine.org
http://vis.stanford.edu/wrangler/
http://cran.us.r-project.org
http://en.wikipedia.org/wiki/SQL
http://www.sas.com/en_us/software/data-management/access.htm
http://www.sas.com/en_us/software/analytics/enterprise-miner.html
http://www-03.ibm.com/software/products/en/category/business-analytics
http://www.mathworks.com/products/matlab/
https://www.statsoft.com

21.	 [21]	“Mathematica”	[Online].	Available:	http://www.wolfram.com/mathematica/.

22.	 [22]	“Octave”	[Online].	Available:	https://www.gnu.org/software/octave/.

23.	 [23]	“WEKA”	[Online].	Available:	http://www.cs.waikato.ac.nz/ml/weka/.

24.	 [24]	“MADlib”	[Online].	Available:	http://madlib.net.

25.	 [25]	K.	L.	Higbee,	Your	Memory—How	It	Works	and	How	to	Improve	It,	New	York:
Marlowe	&	Company,	1996.

26.	 [26]	S.	Todd,	“Data	Science	and	Big	Data	Curriculum”	[Online].	Available:
http://stevetodd.typepad.com/my_weblog/data-science-and-big-data-

curriculum/.

27.	 [27]	T.	H	Davenport	and	D.	J.	Patil,	“Data	Scientist:	The	Sexiest	Job	of	the	21st
Century,”	Harvard	Business	Review,	October	2012.

http://www.wolfram.com/mathematica/
https://www.gnu.org/software/octave/
http://www.cs.waikato.ac.nz/ml/weka/
http://madlib.net
http://stevetodd.typepad.com/my_weblog/data-science-and-big-data-curriculum/

Chapter	3
Review	of	Basic	Data	Analytic	Methods	Using	R

Key	Concepts
1.	 Basic	features	of	R
2.	 Data	exploration	and	analysis	with	R
3.	 Statistical	methods	for	evaluation

The	previous	chapter	presented	the	six	phases	of	the	Data	Analytics	Lifecycle.

	
Phase	1:	Discovery
Phase	2:	Data	Preparation
Phase	3:	Model	Planning
Phase	4:	Model	Building
Phase	5:	Communicate	Results
Phase	6:	Operationalize

The	first	three	phases	involve	various	aspects	of	data	exploration.	In	general,	the	success
of	 a	 data	 analysis	 project	 requires	 a	 deep	 understanding	 of	 the	 data.	 It	 also	 requires	 a
toolbox	for	mining	and	presenting	the	data.	These	activities	include	the	study	of	the	data
in	 terms	 of	 basic	 statistical	measures	 and	 creation	 of	 graphs	 and	 plots	 to	 visualize	 and
identify	 relationships	 and	 patterns.	 Several	 free	 or	 commercial	 tools	 are	 available	 for
exploring,	 conditioning,	 modeling,	 and	 presenting	 data.	 Because	 of	 its	 popularity	 and
versatility,	 the	 open-source	 programming	 language	 R	 is	 used	 to	 illustrate	 many	 of	 the
presented	analytical	tasks	and	models	in	this	book.

This	 chapter	 introduces	 the	 basic	 functionality	 of	 the	 R	 programming	 language	 and
environment.	The	first	section	gives	an	overview	of	how	to	use	R	to	acquire,	parse,	and
filter	the	data	as	well	as	how	to	obtain	some	basic	descriptive	statistics	on	a	dataset.	The
second	 section	 examines	 using	 R	 to	 perform	 exploratory	 data	 analysis	 tasks	 using
visualization.	The	final	section	focuses	on	statistical	inference,	such	as	hypothesis	testing
and	analysis	of	variance	in	R.

3.1	Introduction	to	R
R	is	a	programming	language	and	software	framework	for	statistical	analysis	and	graphics.
Available	for	use	under	the	GNU	General	Public	License	[1],	R	software	and	installation
instructions	 can	 be	 obtained	 via	 the	 Comprehensive	 R	 Archive	 and	 Network	 [2].	 This
section	 provides	 an	 overview	 of	 the	 basic	 functionality	 of	 R.	 In	 later	 chapters,	 this
foundation	in	R	is	utilized	to	demonstrate	many	of	the	presented	analytical	techniques.

Before	 delving	 into	 specific	 operations	 and	 functions	 of	 R	 later	 in	 this	 chapter,	 it	 is
important	to	understand	the	flow	of	a	basic	R	script	to	address	an	analytical	problem.	The
following	R	code	 illustrates	a	 typical	analytical	situation	 in	which	a	dataset	 is	 imported,
the	contents	of	the	dataset	are	examined,	and	some	modeling	building	tasks	are	executed.
Although	the	reader	may	not	yet	be	familiar	with	the	R	syntax,	the	code	can	be	followed
by	reading	the	embedded	comments,	denoted	by	#.	 In	 the	following	scenario,	 the	annual
sales	 in	 U.S.	 dollars	 for	 10,000	 retail	 customers	 have	 been	 provided	 in	 the	 form	 of	 a
comma-separated-value	(CSV)	file.	The	read.csv()	 function	 is	used	 to	 import	 the	CSV
file.	This	dataset	is	stored	to	the	R	variable	sales	using	the	assignment	operator	<-.
#	import	a	CSV	file	of	the	total	annual	sales	for	each	customer

sales	<-	read.csv(“c:/data/yearly_sales.csv”)

#	examine	the	imported	dataset

head(sales)

summary(sales)

#	plot	num_of_orders	vs.	sales

plot(sales$num_of_orders,sales$sales_total,

		main=“Number	of	Orders	vs.	Sales”)

#	perform	a	statistical	analysis	(fit	a	linear	regression	model)

results	<-	lm(sales$sales_total	˜	sales$num_of_orders)

summary(results)

#	perform	some	diagnostics	on	the	fitted	model

#	plot	histogram	of	the	residuals

hist(results$residuals,	breaks	=	800)

In	this	example,	the	data	file	is	imported	using	the	read.csv()	function.	Once	the	file	has
been	 imported,	 it	 is	 useful	 to	 examine	 the	 contents	 to	 ensure	 that	 the	 data	 was	 loaded
properly	as	well	as	to	become	familiar	with	the	data.	In	the	example,	the	head()	function,
by	default,	displays	the	first	six	records	of	sales.
#	examine	the	imported	dataset

head(sales)

cust_id	sales_total	num_of_orders	gender

1	100001		800.64				3		F

2	100002		217.53				3		F

3	100003		74.58				2		M

4	100004		498.60				3		M

5	100005		723.11				4		F

6	100006		69.43				2		F

The	 summary()	 function	 provides	 some	 descriptive	 statistics,	 such	 as	 the	 mean	 and
median,	for	each	data	column.	Additionally,	the	minimum	and	maximum	values	as	well	as
the	1st	and	3rd	quartiles	are	provided.	Because	the	gender	column	contains	two	possible
characters,	an	“F”	(female)	or	“M”	(male),	the	summary()	function	provides	the	count	of
each	character’s	occurrence.

summary(sales)

cust_id		sales_total		num_of_orders	gender	

Min.	:100001	Min.	:	30.02	Min.	:	1.000	F:5035	

1st	Qu.:102501	1st	Qu.:	80.29	1st	Qu.:	2.000	M:4965	

Median	:105001	Median	:	151.65	Median	:	2.000			

Mean	:105001	Mean	:	249.46	Mean	:	2.428			

3rd	Qu.:107500	3rd	Qu.:	295.50	3rd	Qu.:	3.000			

Max.	:110000	Max.	:7606.09	Max.	:22.000		

Plotting	a	dataset’s	contents	can	provide	information	about	the	relationships	between	the
various	 columns.	 In	 this	 example,	 the	 plot()	 function	 generates	 a	 scatterplot	 of	 the
number	of	orders	(sales$num_of_orders)	against	the	annual	sales	(sales$sales_total).
The	$	 is	 used	 to	 reference	 a	 specific	 column	 in	 the	 dataset	sales.	The	 resulting	plot	 is
shown	in	Figure	3.1.
#	plot	num_of_orders	vs.	sales

plot(sales$num_of_orders,sales$sales_total,

		main=“Number	of	Orders	vs.	Sales”)

Figure	3.1	Graphically	examining	the	data

Each	point	corresponds	to	the	number	of	orders	and	the	total	sales	for	each	customer.	The
plot	 indicates	 that	 the	 annual	 sales	 are	 proportional	 to	 the	 number	 of	 orders	 placed.
Although	 the	observed	 relationship	between	 these	 two	variables	 is	not	purely	 linear,	 the
analyst	 decided	 to	 apply	 linear	 regression	 using	 the	lm()	 function	 as	 a	 first	 step	 in	 the
modeling	process.
results	<-	lm(sales$sales_total	˜	sales$num_of_orders)

results

Call:

lm(formula	=	sales$sales_total	˜	sales$num_of_orders)

Coefficients:

		(Intercept)	sales$num_of_orders	

				-154.1				166.2

The	resulting	intercept	and	slope	values	are	–154.1	and	166.2,	respectively,	for	the	fitted
linear	 equation.	 However,	 results	 stores	 considerably	 more	 information	 that	 can	 be
examined	with	the	summary()	function.	Details	on	the	contents	of	results	are	examined
by	applying	the	attributes()	function.	Because	regression	analysis	is	presented	in	more
detail	 later	 in	 the	book,	 the	 reader	should	not	overly	 focus	on	 interpreting	 the	 following
output.

summary(results)

Call:

lm(formula	=	sales$sales_total	˜	sales$num_of_orders)

Residuals:

Min		1Q	Median		3Q	Max	

-666.5	-125.5	-26.7	86.6	4103.4	

Coefficients:

					Estimate	Std.	Error	t	value	Pr(>|t|)	

(Intercept)			-154.128		4.129	-37.33	<2e-16	***

sales$num_of_orders	166.221		1.462	113.66	<2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	210.8	on	9998	degrees	of	freedom

Multiple	R-squared:	0.5637,		Adjusted	R-squared:	0.5637	

F-statistic:	1.292e+04	on	1	and	9998	DF,	p-value:	<	2.2e-16

The	 summary()	 function	 is	 an	 example	 of	 a	 generic	 function.	 A	 generic	 function	 is	 a
group	 of	 functions	 sharing	 the	 same	 name	 but	 behaving	 differently	 depending	 on	 the
number	 and	 the	 type	 of	 arguments	 they	 receive.	 Utilized	 previously,	 plot()	 is	 another
example	 of	 a	 generic	 function;	 the	 plot	 is	 determined	 by	 the	 passed	 variables.	 Generic
functions	 are	 used	 throughout	 this	 chapter	 and	 the	 book.	 In	 the	 final	 portion	 of	 the
example,	the	following	R	code	uses	the	generic	function	hist()	 to	generate	a	histogram
(Figure	3.2)	of	 the	residuals	stored	in	results.	The	function	call	 illustrates	 that	optional
parameter	values	can	be	passed.	In	this	case,	the	number	of	breaks	is	specified	to	observe
the	large	residuals.
#	perform	some	diagnostics	on	the	fitted	model

#	plot	histogram	of	the	residuals

hist(results$residuals,	breaks	=	800)

Figure	3.2	Evidence	of	large	residuals

This	simple	example	illustrates	a	few	of	the	basic	model	planning	and	building	tasks	that
may	occur	in	Phases	3	and	4	of	the	Data	Analytics	Lifecycle.	Throughout	this	chapter,	it	is
useful	to	envision	how	the	presented	R	functionality	will	be	used	in	a	more	comprehensive
analysis.

3.1.1	R	Graphical	User	Interfaces
R	software	uses	a	command-line	interface	(CLI)	that	is	similar	to	the	BASH	shell	in	Linux
or	the	interactive	versions	of	scripting	languages	such	as	Python.	UNIX	and	Linux	users

can	enter	command	R	at	the	terminal	prompt	to	use	the	CLI.	For	Windows	installations,	R
comes	with	RGui.exe,	which	provides	a	basic	graphical	user	interface	(GUI).	However,	to
improve	 the	 ease	of	writing,	 executing,	 and	debugging	R	 code,	 several	 additional	GUIs
have	 been	 written	 for	 R.	 Popular	 GUIs	 include	 the	 R	 commander	 [3],	 Rattle	 [4],	 and
RStudio	[5].	This	section	presents	a	brief	overview	of	RStudio,	which	was	used	to	build
the	 R	 examples	 in	 this	 book.	 Figure	 3.3	 provides	 a	 screenshot	 of	 the	 previous	 R	 code
example	executed	in	RStudio.

Figure	3.3	RStudio	GUI

The	four	highlighted	window	panes	follow.

	
Scripts:	Serves	as	an	area	to	write	and	save	R	code
Workspace:	Lists	the	datasets	and	variables	in	the	R	environment
Plots:	Displays	the	plots	generated	by	the	R	code	and	provides	a	straightforward
mechanism	to	export	the	plots
Console:	Provides	a	history	of	the	executed	R	code	and	the	output

Additionally,	 the	 console	 pane	 can	be	used	 to	 obtain	 help	 information	on	R.	Figure	3.4
illustrates	that	by	entering	?lm	at	the	console	prompt,	the	help	details	of	the	lm()	function
are	provided	on	the	right.	Alternatively,	help(lm)	could	have	been	entered	at	the	console
prompt.

Figure	3.4	Accessing	help	in	Rstudio

Functions	such	as	edit()	and	fix()	allow	the	user	to	update	the	contents	of	an	R	variable.
Alternatively,	such	changes	can	be	implemented	with	RStudio	by	selecting	the	appropriate
variable	from	the	workspace	pane.

R	allows	one	to	save	the	workspace	environment,	including	variables	and	loaded	libraries,
into	 an	 .Rdata	 file	 using	 the	 save.image()	 function.	 An	 existing	 .Rdata	 file	 can	 be
loaded	 using	 the	 load.image()	 function.	 Tools	 such	 as	 RStudio	 prompt	 the	 user	 for
whether	the	developer	wants	to	save	the	workspace	connects	prior	to	exiting	the	GUI.

The	 reader	 is	 encouraged	 to	 install	 R	 and	 a	 preferred	 GUI	 to	 try	 out	 the	 R	 examples
provided	 in	 the	 book	 and	 utilize	 the	 help	 functionality	 to	 access	more	 details	 about	 the
discussed	topics.

3.1.2	Data	Import	and	Export
In	the	annual	retail	sales	example,	the	dataset	was	imported	into	R	using	the	read.csv()
function	as	in	the	following	code.
sales	<-	read.csv(“c:/data/yearly_sales.csv”)

R	uses	a	forward	slash	(/)	as	 the	separator	character	 in	 the	directory	and	file	paths.	This
convention	 makes	 script	 files	 somewhat	 more	 portable	 at	 the	 expense	 of	 some	 initial
confusion	on	the	part	of	Windows	users,	who	may	be	accustomed	to	using	a	backslash	(\)
as	a	separator.	To	simplify	the	import	of	multiple	files	with	long	path	names,	the	setwd()
function	 can	 be	 used	 to	 set	 the	working	directory	 for	 the	 subsequent	 import	 and	 export
operations,	as	shown	in	the	following	R	code.

setwd(“c:/data/”)

sales	<-	read.csv(“yearly_sales.csv”)

Other	 import	 functions	 include	read.table()	and	read.delim(),	which	 are	 intended	 to
import	other	common	file	types	such	as	TXT.	These	functions	can	also	be	used	to	import
the	yearly_sales	.csv	file,	as	the	following	code	illustrates.
sales_table	<-	read.table(“yearly_sales.csv”,	header=TRUE,	sep=”,”)

sales_delim	<-	read.delim(“yearly_sales.csv”,	sep=”,”)

The	main	difference	between	these	import	functions	is	the	default	values.	For	example,	the
read	.delim()	function	expects	the	column	separator	to	be	a	tab	(“\t“).	In	the	event	that
the	 numerical	 data	 in	 a	 data	 file	 uses	 a	 comma	 for	 the	 decimal,	 R	 also	 provides	 two
additional	 functions—read.csv2()	 and	read.delim2()—to	 import	 such	data.	Table	 3.1
includes	 the	 expected	 defaults	 for	 headers,	 column	 separators,	 and	 decimal	 point
notations.

Table	3.1	Import	Function	Defaults

Function Headers Separator Decimal	Point
read.table() FALSE “	” “.”
read.csv() TRUE “,” “.”
read.csv2() TRUE “;” “,”
read.delim() TRUE “\t” “.”
read.delim2() TRUE “\t” “,”

The	 analogous	 R	 functions	 such	 as	 write.table(),	 write.csv(),	 and	 write.csv2()
enable	exporting	of	R	datasets	to	an	external	file.	For	example,	the	following	R	code	adds
an	additional	column	to	the	sales	dataset	and	exports	 the	modified	dataset	 to	an	external
file.
#	add	a	column	for	the	average	sales	per	order

sales$per_order	<-	sales$sales_total/sales$num_of_orders

#	export	data	as	tab	delimited	without	the	row	names

write.table(sales,“sales_modified.txt”,	sep=”\t”,	row.names=FALSE

Sometimes	 it	 is	necessary	 to	read	data	from	a	database	management	system	(DBMS).	R
packages	 such	 as	DBI	 [6]	 and	RODBC	 [7]	 are	 available	 for	 this	 purpose.	 These	 packages
provide	database	interfaces	for	communication	between	R	and	DBMSs	such	as	MySQL,
Oracle,	 SQL	 Server,	 PostgreSQL,	 and	 Pivotal	 Greenplum.	 The	 following	 R	 code
demonstrates	how	to	install	 the	RODBC	package	with	the	install	.packages()	 function.
The	 library()	 function	 loads	 the	 package	 into	 the	 R	 workspace.	 Finally,	 a	 connector
(conn)	is	initialized	for	connecting	to	a	Pivotal	Greenplum	database	training2	via	open
database	connectivity	(ODBC)	with	user	user.	The	training2	database	must	be	defined
either	in	the	/etc/ODBC.ini	configuration	file	or	using	the	Administrative	Tools	under	the
Windows	Control	Panel.
install.packages(“RODBC”)

library(RODBC)

conn	<-	odbcConnect(“training2”,	uid=“user”,	pwd=“password”)

The	connector	needs	to	be	present	to	submit	a	SQL	query	to	an	ODBC	database	by	using
the	sqlQuery()	function	from	the	RODBC	package.	The	following	R	code	retrieves	specific
columns	 from	 the	 housing	 table	 in	 which	 household	 income	 (hinc)	 is	 greater	 than
$1,000,000.
housing_data	<-	sqlQuery(conn,	“select	serialno,	state,	persons,	rooms

								from	housing

								where	hinc	>	1000000”)

head(housing_data)

serialno	state	persons	rooms

1	3417867		6		2		7

2	3417867		6		2		7

3	4552088		6		5		9

4	4552088		6		5		9

5	8699293		6		5		5

6	8699293		6		5		5

Although	plots	can	be	saved	using	the	RStudio	GUI,	plots	can	also	be	saved	using	R	code
by	specifying	the	appropriate	graphic	devices.	Using	the	jpeg()	function,	the	following	R
code	creates	a	new	JPEG	file,	adds	a	histogram	plot	 to	 the	file,	and	 then	closes	 the	file.
Such	 techniques	 are	 useful	when	 automating	 standard	 reports.	Other	 functions,	 such	 as
png(),	bmp(),	pdf(),	 and	postscript(),	 are	 available	 in	R	 to	 save	 plots	 in	 the	 desired
format.
jpeg(file=“c:/data/sales_hist.jpeg”)	#	create	a	new	jpeg	file

hist(sales$num_of_orders)			#	export	histogram	to	jpeg

dev.off()							#	shut	off	the	graphic	device

More	 information	 on	 data	 imports	 and	 exports	 can	 be	 found	 at	 http://cran.r-
project.org/doc/manuals/r-release/R-data.html,	 such	 as	 how	 to	 import	 datasets
from	statistical	software	packages	including	Minitab,	SAS,	and	SPSS.

3.1.3	Attribute	and	Data	Types
In	the	earlier	example,	 the	sales	variable	contained	a	 record	for	each	customer.	Several
characteristics,	such	as	total	annual	sales,	number	of	orders,	and	gender,	were	provided	for
each	 customer.	 In	 general,	 these	 characteristics	 or	 attributes	 provide	 the	 qualitative	 and
quantitative	measures	 for	 each	 item	or	 subject	 of	 interest.	Attributes	 can	be	 categorized
into	 four	 types:	nominal,	ordinal,	 interval,	 and	 ratio	 (NOIR)	 [8].	Table	3.2	 distinguishes
these	 four	 attribute	 types	 and	 shows	 the	 operations	 they	 support.	 Nominal	 and	 ordinal
attributes	 are	 considered	 categorical	 attributes,	 whereas	 interval	 and	 ratio	 attributes	 are
considered	numeric	attributes.

Table	3.2	NOIR	Attribute	Types

Categorical	(Qualitative) Numeric	(Quantitative)
Nominal Ordinal Interval Ratio

Definition
The	values	represent
labels	that	distinguish
one	from	another.

Attributes	imply
a	sequence.

The	difference
between	two
values	is

Both	the
difference	and
the	ratio	of	two
values	are

http://cran.r-project.org/doc/manuals/r-release/R-data.html

meaningful. meaningful.

Examples

ZIP	codes,	nationality,
street	names,	gender,

employee	ID
numbers,	TRUE	or

FALSE

Quality	of
diamonds,

academic	grades,
magnitude	of
earthquakes

Temperature	in
Celsius	or
Fahrenheit,

calendar	dates,
latitudes

Age,	temperature
in	Kelvin,

counts,	length,
weight

Operations =,	≠ =,	≠,
<,	≤,	>,	≥

=,	≠,
<,	≤,	>,	≥,

+,	-

=,	≠,
<,	≤,	>,	≥,

+,	-,
×,	÷

Data	 of	 one	 attribute	 type	 may	 be	 converted	 to	 another.	 For	 example,	 the	 quality	 of
diamonds	 {Fair,	 Good,	 Very	 Good,	 Premium,	 Ideal}	 is	 considered	 ordinal	 but	 can	 be
converted	 to	 nominal	 {Good,	 Excellent}	 with	 a	 defined	 mapping.	 Similarly,	 a	 ratio
attribute	 like	Age	can	be	converted	 into	an	ordinal	attribute	such	as	{Infant,	Adolescent,
Adult,	Senior}.	Understanding	the	attribute	types	in	a	given	dataset	is	important	to	ensure
that	 the	 appropriate	 descriptive	 statistics	 and	 analytic	methods	 are	 applied	 and	 properly
interpreted.	For	example,	the	mean	and	standard	deviation	of	U.S.	postal	ZIP	codes	are	not
very	meaningful	or	appropriate.	Proper	handling	of	categorical	variables	will	be	addressed
in	 subsequent	 chapters.	 Also,	 it	 is	 useful	 to	 consider	 these	 attribute	 types	 during	 the
following	discussion	on	R	data	types.

Numeric,	Character,	and	Logical	Data	Types

Like	other	programming	languages,	R	supports	the	use	of	numeric,	character,	and	logical
(Boolean)	values.	Examples	of	such	variables	are	given	in	the	following	R	code.
i	<-	1							#	create	a	numeric	variable

sport	<-	“football”				#	create	a	character	variable

flag	<-	TRUE					#	create	a	logical	variable

R	 provides	 several	 functions,	 such	 as	 class()	 and	 typeof(),	 to	 examine	 the
characteristics	of	a	given	variable.	The	class()	function	represents	the	abstract	class	of	an
object.	 The	 typeof()	 function	 determines	 the	 way	 an	 object	 is	 stored	 in	 memory.
Although	 i	 appears	 to	 be	 an	 integer,	 i	 is	 internally	 stored	 using	 double	 precision.	 To
improve	 the	 readability	of	 the	code	segments	 in	 this	 section,	 the	 inline	R	comments	are
used	to	explain	the	code	or	to	provide	the	returned	values.
class(i)						#	returns	“numeric”

typeof(i)						#	returns	“double”

class(sport)					#	returns	“character”

typeof(sport)					#	returns	“character”

class(flag)						#	returns	“logical”

typeof(flag)					#	returns	“logical”

Additional	R	functions	exist	that	can	test	the	variables	and	coerce	a	variable	into	a	specific
type.	 The	 following	 R	 code	 illustrates	 how	 to	 test	 if	 i	 is	 an	 integer	 using	 the
is.integer()	 function	 and	 to	 coerce	 i	 into	 a	 new	 integer	 variable,	 j,	 using	 the
as.integer()	function.	Similar	functions	can	be	applied	for	double,	character,	and	logical
types.

is.integer(i)					#	returns	FALSE

j	<-	as.integer(i)				#	coerces	contents	of	i	into	an	integer

is.integer(j)					#	returns	TRUE

The	 application	of	 the	length()	 function	 reveals	 that	 the	 created	 variables	 each	have	 a
length	of	1.	One	might	have	expected	the	returned	length	of	sport	to	have	been	8	for	each
of	the	characters	in	the	string	“football”.	However,	these	three	variables	are	actually	one
element,	vectors.
length(i)						#	returns	1

length(flag)					#	returns	1

length(sport)					#	returns	1	(not	8	for	“football”)

Vectors

Vectors	are	a	basic	building	block	for	data	in	R.	As	seen	previously,	simple	R	variables	are
actually	 vectors.	 A	 vector	 can	 only	 consist	 of	 values	 in	 the	 same	 class.	 The	 tests	 for
vectors	can	be	conducted	using	the	is.vector()	function.
is.vector(i)					#	returns	TRUE

is.vector(flag)					#	returns	TRUE

is.vector(sport)				#	returns	TRUE

R	provides	functionality	 that	enables	 the	easy	creation	and	manipulation	of	vectors.	The
following	R	code	illustrates	how	a	vector	can	be	created	using	the	combine	function,	c()
or	 the	 colon	 operator,	 :,	 to	 build	 a	 vector	 from	 the	 sequence	 of	 integers	 from	 1	 to	 5.
Furthermore,	the	code	shows	how	the	values	of	an	existing	vector	can	be	easily	modified
or	accessed.	The	code,	related	to	the	z	vector,	 indicates	how	logical	comparisons	can	be
built	to	extract	certain	elements	of	a	given	vector.
u	<-	c(“red”,	“yellow”,	“blue”)	#	create	a	vector	“red”	“yellow”	“blue”

u								#	returns	“red”	“yellow”	“blue”

u[1]							#	returns	“red”	(1st	element	in	u)

v	<-	1:5						#	create	a	vector	1	2	3	4	5

v								#	returns	1	2	3	4	5

sum(v)							#	returns	15

w	<-	v	*	2						#	create	a	vector	2	4	6	8	10

w								#	returns	2	4	6	8	10

w[3]							#	returns	6	(the	3rd	element	of	w)

z	<-	v	+	w						#	sums	two	vectors	element	by	element

z								#	returns	3	6	9	12	15

z	>	8							#	returns	FALSE	FALSE	TRUE	TRUE	TRUE

z[z	>	8]						#	returns	9	12	15

z[z	>	8	|	z	<	5]				#	returns	3	9	12	15	(“|”	denotes	“or”)

Sometimes	it	is	necessary	to	initialize	a	vector	of	a	specific	length	and	then	populate	the
content	of	the	vector	later.	The	vector()	function,	by	default,	creates	a	logical	vector.	A
vector	of	a	different	type	can	be	specified	by	using	the	mode	parameter.	The	vector	c,	an
integer	 vector	 of	 length	 0,	may	 be	 useful	when	 the	 number	 of	 elements	 is	 not	 initially
known	 and	 the	 new	 elements	will	 later	 be	 added	 to	 the	 end	of	 the	 vector	 as	 the	 values
become	available.
a	<-	vector(length=3)			#	create	a	logical	vector	of	length	3

a								#	returns	FALSE	FALSE	FALSE

b	<-	vector(mode=“numeric”,	3)	#	create	a	numeric	vector	of	length	3

typeof(b)						#	returns	“double”

b[2]	<-	3.1						#	assign	3.1	to	the	2nd	element

b								#	returns	0.0	3.1	0.0

c	<-	vector(mode=“integer”,	0)	#	create	an	integer	vector	of	length	0

c								#	returns	integer(0)

length(c)						#	returns	0

Although	 vectors	 may	 appear	 to	 be	 analogous	 to	 arrays	 of	 one	 dimension,	 they	 are
technically	 dimensionless,	 as	 seen	 in	 the	 following	 R	 code.	 The	 concept	 of	 arrays	 and
matrices	is	addressed	in	the	following	discussion.
length(b)						#	returns	3

dim(b)							#	returns	NULL	(an	undefined	value)

Arrays	and	Matrices

The	array()	 function	 can	be	 used	 to	 restructure	 a	 vector	 as	 an	 array.	For	 example,	 the
following	R	 code	 builds	 a	 three-dimensional	 array	 to	 hold	 the	 quarterly	 sales	 for	 three
regions	over	a	two-year	period	and	then	assign	the	sales	amount	of	$158,000	to	the	second
region	for	the	first	quarter	of	the	first	year.
#	the	dimensions	are	3	regions,	4	quarters,	and	2	years

quarterly_sales	<-	array(0,	dim=c(3,4,2))

quarterly_sales[2,1,1]	<-	158000

quarterly_sales

,	,	1

		[,1]	[,2]	[,3]	[,4]

[1,]		0	0	0	0

[2,]	158000	0	0	0

[3,]		0	0	0	0

,	,	2

		[,1]	[,2]	[,3]	[,4]

[1,]	0	0	0	0

[2,]	0	0	0	0

[3,]	0	0	0	0

A	two-dimensional	array	is	known	as	a	matrix.	The	following	code	initializes	a	matrix	to
hold	 the	quarterly	 sales	 for	 the	 three	 regions.	The	parameters	nrow	 and	ncol	 define	 the
number	of	rows	and	columns,	respectively,	for	the	sales_matrix.
sales_matrix	<-	matrix(0,	nrow	=	3,	ncol	=	4)

sales_matrix

		[,1]	[,2]	[,3]	[,4]

[1,]	0	0	0	0

[2,]	0	0	0	0

[3,]	0	0	0	0

R	 provides	 the	 standard	 matrix	 operations	 such	 as	 addition,	 subtraction,	 and
multiplication,	 as	 well	 as	 the	 transpose	 function	 t()	 and	 the	 inverse	 matrix	 function
matrix.inverse()	included	in	the	matrixcalc	package.	The	following	R	code	builds	a	3
×	3	matrix,	M,	and	multiplies	it	by	its	inverse	to	obtain	the	identity	matrix.
library(matrixcalc)

M	<-	matrix(c(1,3,3,5,0,4,3,3,3),nrow	=	3,ncol	=	3)	#	build	a	3x3	matrix

M	%*%	matrix.inverse(M)						#	multiply	M	by	inverse(M)

		[,1]	[,2]	[,3]

[1,]	1	0	0

[2,]	0	1	0

[3,]	0	0	1

Data	Frames

Similar	 to	 the	 concept	 of	 matrices,	 data	 frames	 provide	 a	 structure	 for	 storing	 and
accessing	 several	 variables	 of	 possibly	 different	 data	 types.	 In	 fact,	 as	 the
is.data.frame()	function	indicates,	a	data	frame	was	created	by	the	read.csv()	function
at	the	beginning	of	the	chapter.
#import	a	CSV	file	of	the	total	annual	sales	for	each	customer

sales	<-	read.csv(“c:/data/yearly_sales.csv”)

is.data.frame(sales)			#	returns	TRUE

As	seen	earlier,	 the	variables	stored	in	the	data	frame	can	be	easily	accessed	using	the	$
notation.	The	following	R	code	 illustrates	 that	 in	 this	example,	each	variable	 is	a	vector
with	the	exception	of	gender,	which	was,	by	a	read.csv()	default,	imported	as	a	factor.
Discussed	 in	detail	 later	 in	 this	section,	a	 factor	denotes	a	categorical	variable,	 typically
with	a	few	finite	levels	such	as	“F”	and	“M”	in	the	case	of	gender.
length(sales$num_of_orders)		#	returns	10000	(number	of	customers)

is.vector(sales$cust_id)		#	returns	TRUE

is.vector(sales$sales_total)	#	returns	TRUE

is.vector(sales$num_of_orders)	#	returns	TRUE

is.vector(sales$gender)			#	returns	FALSE

is.factor(sales$gender)			#	returns	TRUE

Because	of	their	flexibility	to	handle	many	data	types,	data	frames	are	the	preferred	input
format	for	many	of	the	modeling	functions	available	in	R.	The	following	use	of	the	str()
function	provides	the	structure	of	the	sales	data	frame.	This	function	identifies	the	integer
and	numeric	 (double)	data	 types,	 the	 factor	variables	and	 levels,	as	well	as	 the	 first	 few
values	for	each	variable.
str(sales)				#	display	structure	of	the	data	frame	object

‘data.frame’:	10000	obs.	of	4	variables:

$	cust_id		:	int	100001	100002	100003	100004	100005	100006	…	

$	sales_total	:	num	800.6	217.5	74.6	498.6	723.1	…

$	num_of_orders:	int	3	3	2	3	4	2	2	2	2	2	…

$	gender		:	Factor	w/	2	levels	“F”,“M”:	1	1	2	2	1	1	2	2	1	2	…

In	the	simplest	sense,	data	frames	are	lists	of	variables	of	the	same	length.	A	subset	of	the
data	 frame	 can	 be	 retrieved	 through	 subsetting	 operators.	 R’s	 subsetting	 operators	 are
powerful	 in	 that	 they	allow	one	to	express	complex	operations	 in	a	succinct	fashion	and
easily	retrieve	a	subset	of	the	dataset.
#	extract	the	fourth	column	of	the	sales	data	frame

sales[,4]

#	extract	the	gender	column	of	the	sales	data	frame

sales$gender

#	retrieve	the	first	two	rows	of	the	data	frame

sales[1:2,]

#	retrieve	the	first,	third,	and	fourth	columns

sales[,c(1,3,4)]

#	retrieve	both	the	cust_id	and	the	sales_total	columns

sales[,c(“cust_id”,	“sales_total”)]

#	retrieve	all	the	records	whose	gender	is	female

sales[sales$gender==“F”,]

The	following	R	code	shows	that	the	class	of	the	sales	variable	is	a	data	frame.	However,
the	 type	 of	 the	 sales	 variable	 is	 a	 list.	 A	 list	 is	 a	 collection	 of	 objects	 that	 can	 be	 of
various	types,	including	other	lists.
class(sales)

“data.frame”

typeof(sales)

“list”

Lists

Lists	 can	 contain	 any	 type	 of	 objects,	 including	 other	 lists.	 Using	 the	 vector	 v	 and	 the
matrix	M	created	in	earlier	examples,	the	following	R	code	creates	assortment,	a	list	of
different	object	types.
#	build	an	assorted	list	of	a	string,	a	numeric,	a	list,	a	vector,

#	and	a	matrix

housing	<-	list(“own”,	“rent”)

assortment	<-	list(“football”,	7.5,	housing,	v,	M)

assortment

[[1]]

[1]	“football”

[[2]]

[1]	7.5

[[3]]

[[3]][[1]]

[1]	“own”

[[3]][[2]]

[1]	“rent”

[[4]]

[1]	1	2	3	4	5

[[5]]

		[,1]	[,2]	[,3]

[1,]	1	5	3

[2,]	3	0	3

[3,]	3	4	3

In	 displaying	 the	 contents	 of	 assortment,	 the	 use	 of	 the	 double	 brackets,	 [[]],	 is	 of
particular	 importance.	 As	 the	 following	 R	 code	 illustrates,	 the	 use	 of	 the	 single	 set	 of
brackets	only	accesses	an	item	in	the	list,	not	its	content.
#	examine	the	fifth	object,	M,	in	the	list

class(assortment[5])			#	returns	“list”

length(assortment[5])			#	returns	1

class(assortment[[5]])			#	returns	“matrix”

length(assortment[[5]])			#	returns	9	(for	the	3x3	matrix)

As	presented	earlier	in	the	data	frame	discussion,	the	str()	 function	offers	details	about
the	structure	of	a	list.
str(assortment)

List	of	5

$:	chr	“football”

$:	num	7.5

$:List	of	2

..$:	chr	“own”

..$:	chr	“rent”

$:	int	[1:5]	1	2	3	4	5

$:	num	[1:3,	1:3]	1	3	3	5	0	4	3	3	3

Factors

Factors	were	briefly	 introduced	during	 the	discussion	of	 the	gender	 variable	 in	 the	data
frame	sales.	In	this	case,	gender	could	assume	one	of	two	levels:	F	or	M.	Factors	can	be
ordered	or	not	ordered.	In	the	case	of	gender,	the	levels	are	not	ordered.
class(sales$gender)				#	returns	“factor”

is.ordered(sales$gender)		#	returns	FALSE

Included	 with	 the	 ggplot2	 package,	 the	 diamonds	 data	 frame	 contains	 three	 ordered
factors.	Examining	 the	cut	 factor,	 there	 are	 five	 levels	 in	 order	 of	 improving	 cut:	 Fair,
Good,	Very	Good,	Premium,	and	 Ideal.	Thus,	sales$gender	contains	nominal	data,	and
diamonds$cut	contains	ordinal	data.
head(sales$gender)	#	display	first	six	values	and	the	levels

F	F	M	M	F	F

Levels:	F	M

library(ggplot2)

data(diamonds)			#	load	the	data	frame	into	the	R	workspace

str(diamonds)

‘data.frame’:	53940	obs.	of	10	variables:

$	carat	:	num	0.23	0.21	0.23	0.29	0.31	0.24	0.24	0.26	0.22	…

$	cut	:	Ord.factor	w/	5	levels	“Fair”<“Good”<..:	5	4	2	4	2	3	…

$	color	:	Ord.factor	w/	7	levels	“D”<“E”<“F”<“G”<..:	2	2	2	6	7	7	…

$	clarity:	Ord.factor	w/	8	levels	“I1”<“SI2”<“SI1”<..:	2	3	5	4	2	…

$	depth	:	num	61.5	59.8	56.9	62.4	63.3	62.8	62.3	61.9	65.1	59.4	…

$	table	:	num	55	61	65	58	58	57	57	55	61	61	…

$	price	:	int	326	326	327	334	335	336	336	337	337	338	…

$	x		:	num	3.95	3.89	4.05	4.2	4.34	3.94	3.95	4.07	3.87	4	…

$	y		:	num	3.98	3.84	4.07	4.23	4.35	3.96	3.98	4.11	3.78	4.05	…

$	z		:	num	2.43	2.31	2.31	2.63	2.75	2.48	2.47	2.53	2.49	2.39	…

head(diamonds$cut)		#	display	first	six	values	and	the	levels

Ideal		Premium	Good		Premium	Good		Very	Good

Levels:	Fair	<	Good	<	Very	Good	<	Premium	<	Ideal

Suppose	 it	 is	 decided	 to	 categorize	 sales$sales_totals	 into	 three	 groups—small,
medium,	and	big—according	 to	 the	amount	of	 the	 sales	with	 the	 following	code.	These
groupings	are	 the	basis	 for	 the	new	ordinal	 factor,	 spender,	with	 levels	{small,	medium,
big}.
#	build	an	empty	character	vector	of	the	same	length	as	sales

sales_group	<-	vector(mode=“character”,

						length=length(sales$sales_total))

#	group	the	customers	according	to	the	sales	amount

sales_group[sales$sales_total<100]	<-	“small”

sales_group[sales$sales_total>=100	&	sales$sales_total<500]	<-	“medium”

sales_group[sales$sales_total>=500]	<-	“big”

#	create	and	add	the	ordered	factor	to	the	sales	data	frame

spender	<-	factor(sales_group,levels=c(“small”,	“medium”,	“big”),

								ordered	=	TRUE)

sales	<-	cbind(sales,spender)

str(sales$spender)

Ord.factor	w/	3	levels	“small”<“medium”<..:	3	2	1	2	3	1	1	1	2	1	…

head(sales$spender)

big	medium	small	medium	big	small	

Levels:	small	<	medium	<	big

The	cbind()	function	is	used	to	combine	variables	column-wise.	The	rbind()	function	is
used	to	combine	datasets	row-wise.	The	use	of	factors	is	important	in	several	R	statistical
modeling	 functions,	 such	 as	 analysis	 of	 variance,	aov(),	 presented	 later	 in	 this	 chapter,
and	the	use	of	contingency	tables,	discussed	next.

Contingency	Tables

In	R,	table	refers	to	a	class	of	objects	used	to	store	the	observed	counts	across	the	factors
for	a	given	dataset.	Such	a	table	is	commonly	referred	to	as	a	contingency	table	and	is	the
basis	for	performing	a	statistical	test	on	the	independence	of	the	factors	used	to	build	the
table.	The	 following	R	code	builds	a	contingency	 table	based	on	 the	sales$gender	 and
sales$spender	factors.
#	build	a	contingency	table	based	on	the	gender	and	spender	factors

sales_table	<-	table(sales$gender,sales$spender)

sales_table

small	medium	big

F	1726	2746	563

M	1656	2723	586

class(sales_table)				#	returns	“table”

typeof(sales_table)				#	returns	“integer”

dim(sales_table)				#	returns	2	3

#	performs	a	chi-squared	test

summary(sales_table)

Number	of	cases	in	table:	10000	

Number	of	factors:	2	

Test	for	independence	of	all	factors:

Chisq	=	1.516,	df	=	2,	p-value	=	0.4686

Based	on	the	observed	counts	in	the	table,	the	summary()	function	performs	a	chi-squared
test	on	the	independence	of	the	two	factors.	Because	the	reported	p-value	is	greater	than
0.05,	the	assumed	independence	of	the	two	factors	is	not	rejected.	Hypothesis	testing	and
p-values	 are	 covered	 in	 more	 detail	 later	 in	 this	 chapter.	 Next,	 applying	 descriptive
statistics	in	R	is	examined.

3.1.4	Descriptive	Statistics
It	 has	 already	 been	 shown	 that	 the	 summary()	 function	 provides	 several	 descriptive
statistics,	such	as	the	mean	and	median,	about	a	variable	such	as	the	sales	data	frame.	The
results	now	 include	 the	counts	 for	 the	 three	 levels	of	 the	spender	variable	based	on	 the
earlier	examples	involving	factors.
summary(sales)

cust_id		sales_total		num_of_orders	gender		spender

Min.	:100001	Min.	:	30.02	Min.	:	1.000	F:5035	small	:3382

1st	Qu.:102501	1st	Qu.:	80.29	1st	Qu.:	2.000	M:4965	medium:5469

Median	:105001	Median	:	151.65	Median	:	2.000			big	:1149

Mean	:105001	Mean	:	249.46	Mean	:	2.428						

3rd	Qu.:107500	3rd	Qu.:	295.50	3rd	Qu.:	3.000						

Max.	:110000	Max.	:7606.09	Max.	:22.000

The	following	code	provides	some	common	R	functions	that	include	descriptive	statistics.

In	parentheses,	the	comments	describe	the	functions.
#	to	simplify	the	function	calls,	assign

x	<-	sales$sales_total

y	<-	sales$num_of_orders

cor(x,y)						#	returns	0.7508015	(correlation)

cov(x,y)						#	returns	345.2111	(covariance)

IQR(x)							#	returns	215.21	(interquartile	range)

mean(x)							#	returns	249.4557	(mean)

median(x)						#	returns	151.65	(median)

range(x)						#	returns	30.02	7606.09	(min	max)

sd(x)							#	returns	319.0508	(std.	dev.)

var(x)							#	returns	101793.4	(variance)

The	IQR()	 function	provides	 the	difference	between	the	third	and	the	first	quartiles.	The
other	 functions	 are	 fairly	 self-explanatory	 by	 their	 names.	 The	 reader	 is	 encouraged	 to
review	the	available	help	files	for	acceptable	inputs	and	possible	options.

The	 function	 apply()	 is	 useful	 when	 the	 same	 function	 is	 to	 be	 applied	 to	 several
variables	 in	 a	 data	 frame.	 For	 example,	 the	 following	 R	 code	 calculates	 the	 standard
deviation	for	the	first	three	variables	in	sales.	In	the	code,	setting	MARGIN=2	specifies	that
the	 sd()	 function	 is	 applied	 over	 the	 columns.	 Other	 functions,	 such	 as	 lapply()	 and
sapply(),	apply	a	function	to	a	list	or	vector.	Readers	can	refer	to	the	R	help	files	to	learn
how	to	use	these	functions.
apply(sales[,c(1:3)],	MARGIN=2,	FUN=sd)

		cust_id	sales_total	num_of_orders	

2886.895680	319.050782		1.441119

Additional	descriptive	statistics	can	be	applied	with	user-defined	functions.	The	following
R	code	defines	a	function,	my_range(),	to	compute	the	difference	between	the	maximum
and	minimum	values	returned	by	the	range()	function.	In	general,	user-defined	functions
are	useful	for	any	task	or	operation	that	needs	to	be	frequently	repeated.	More	information
on	user-defined	functions	is	available	by	entering	help(“function”)	in	the	console.
#	build	a	function	to	provide	the	difference	between

#	the	maximum	and	the	minimum	values

my_range	<-	function(v)	{range(v)[2]	-	range(v)[1]}

my_range(x)

7576.07

3.2	Exploratory	Data	Analysis
So	far,	this	chapter	has	addressed	importing	and	exporting	data	in	R,	basic	data	types	and
operations,	 and	 generating	 descriptive	 statistics.	 Functions	 such	 as	 summary()	 can	 help
analysts	easily	get	an	idea	of	the	magnitude	and	range	of	the	data,	but	other	aspects	such
as	linear	relationships	and	distributions	are	more	difficult	to	see	from	descriptive	statistics.
For	example,	 the	following	code	shows	a	summary	view	of	a	data	 frame	data	with	 two
columns	 x	 and	 y.	 The	 output	 shows	 the	 range	 of	 x	 and	 y,	 but	 it’s	 not	 clear	 what	 the
relationship	may	be	between	these	two	variables.
summary(data)

		x					y			

Min.	:-1.90483	Min.	:-2.16545	

1st	Qu.:-0.66321	1st	Qu.:-0.71451	

Median	:	0.09367	Median	:-0.03797	

Mean	:	0.02522	Mean	:-0.02153	

3rd	Qu.:	0.65414	3rd	Qu.:	0.55738	

Max.	:	2.18471	Max.	:	1.70199

A	useful	way	to	detect	patterns	and	anomalies	in	the	data	is	through	the	exploratory	data
analysis	with	visualization.	Visualization	gives	 a	 succinct,	 holistic	 view	of	 the	data	 that
may	be	difficult	to	grasp	from	the	numbers	and	summaries	alone.	Variables	x	and	y	of	the
data	 frame	 data	 can	 instead	 be	 visualized	 in	 a	 scatterplot	 (Figure	 3.5),	 which	 easily
depicts	 the	 relationship	 between	 two	 variables.	 An	 important	 facet	 of	 the	 initial	 data
exploration,	 visualization	 assesses	 data	 cleanliness	 and	 suggests	 potentially	 important
relationships	in	the	data	prior	to	the	model	planning	and	building	phases.

Figure	3.5	A	scatterplot	can	easily	show	if	x	and	y	share	a	relation

The	code	to	generate	data	as	well	as	Figure	3.5	is	shown	next.
x	<-	rnorm(50)

y	<-	x	+	rnorm(50,	mean=0,	sd=0.5)

data	<-	as.data.frame(cbind(x,	y))

summary(data)

library(ggplot2)

ggplot(data,	aes(x=x,	y=y))	+

geom_point(size=2)	+

ggtitle(“Scatterplot	of	X	and	Y”)	+

theme(axis.text=element_text(size=12),

		axis.title	=	element_text(size=14),

		plot.title	=	element_text(size=20,	face=“bold”))

Exploratory	 data	 analysis	 [9]	 is	 a	 data	 analysis	 approach	 to	 reveal	 the	 important
characteristics	 of	 a	 dataset,	mainly	 through	 visualization.	This	 section	 discusses	 how	 to
use	 some	 basic	 visualization	 techniques	 and	 the	 plotting	 feature	 in	 R	 to	 perform
exploratory	data	analysis.

3.2.1	Visualization	Before	Analysis
To	illustrate	the	importance	of	visualizing	data,	consider	Anscombe’s	quartet.	Anscombe’s
quartet	consists	of	four	datasets,	as	shown	in	Figure	3.6.	It	was	constructed	by	statistician
Francis	 Anscombe	 [10]	 in	 1973	 to	 demonstrate	 the	 importance	 of	 graphs	 in	 statistical
analyses.

Figure	3.6	Anscombe’s	quartet

The	 four	 datasets	 in	 Anscombe’s	 quartet	 have	 nearly	 identical	 statistical	 properties,	 as
shown	in	Table	3.3.

Table	3.3	Statistical	Properties	of	Anscombe’s	Quartet

Statistical	Property Value
Mean	of	 9

Variance	of	 11

Mean	of	 7.50	(to	2	decimal	points)
Variance	of	 4.12	or	4.13	(to	2	decimal	points)

Correlations	between	 	and	 0.816
Linear	regression	line 	(to	2	decimal	points)

Based	on	the	nearly	identical	statistical	properties	across	each	dataset,	one	might	conclude
that	 these	 four	 datasets	 are	 quite	 similar.	 However,	 the	 scatterplots	 in	 Figure	 3.7	 tell	 a
different	story.	Each	dataset	is	plotted	as	a	scatterplot,	and	the	fitted	lines	are	the	result	of
applying	linear	regression	models.	The	estimated	regression	line	fits	Dataset	1	reasonably
well.	Dataset	2	is	definitely	nonlinear.	Dataset	3	exhibits	a	linear	trend,	with	one	apparent
outlier	at	 .	For	Dataset	4,	the	regression	line	fits	the	dataset	quite	well.	However,	with
only	points	at	two	 	values,	it	is	not	possible	to	determine	that	the	linearity	assumption	is
proper.

Figure	3.7	Anscombe’s	quartet	visualized	as	scatterplots

The	R	code	 for	generating	Figure	3.7	 is	 shown	next.	 It	 requires	 the	R	package	ggplot2
[11],	 which	 can	 be	 installed	 simply	 by	 running	 the	 command
install.packages(“ggplot2”).	 The	 anscombe	 dataset	 for	 the	 plot	 is	 included	 in	 the
standard	 R	 distribution.	 Enter	 data()	 for	 a	 list	 of	 datasets	 included	 in	 the	 R	 base
distribution.	 Enter	 data(DatasetName)	 to	 make	 a	 dataset	 available	 in	 the	 current
workspace.

In	 the	 code	 that	 follows,	 variable	 levels	 is	 created	 using	 the	 gl()	 function,	 which
generates	factors	of	four	levels	(1,	2,	3,	and	4),	each	repeating	11	times.	Variable	mydata	is
created	using	 the	with(data,	expression)	 function,	which	evaluates	an	expression	 in
an	environment	constructed	from	data.	In	this	example,	the	data	is	the	anscombe	dataset,
which	includes	eight	attributes:	x1,	x2,	x3,	x4,	y1,	y2,	y3,	and	y4.	The	expression	part	in
the	 code	 creates	 a	 data	 frame	 from	 the	 anscombe	 dataset,	 and	 it	 only	 includes	 three
attributes:	x,	y,	and	the	group	each	data	point	belongs	to	(mygroup).
install.packages(“ggplot2”)	#	not	required	if	package	has	been	installed

data(anscombe)	#	load	the	anscombe	dataset	into	the	current	workspace

anscombe

x1	x2	x3	x4	y1	y2	y3	y4

1	10	10	10	8	8.04	9.14	7.46	6.58

2	8	8	8	8	6.95	8.14	6.77	5.76

3	13	13	13	8	7.58	8.74	12.74	7.71

4	9	9	9	8	8.81	8.77	7.11	8.84

5	11	11	11	8	8.33	9.26	7.81	8.47

6	14	14	14	8	9.96	8.10	8.84	7.04

7	6	6	6	8	7.24	6.13	6.08	5.25

8	4	4	4	19	4.26	3.10	5.39	12.50

9	12	12	12	8	10.84	9.13	8.15	5.56

10	7	7	7	8	4.82	7.26	6.42	7.91

11	5	5	5	8	5.68	4.74	5.73	6.89

nrow(anscombe)	#	number	of	rows

[1]	11

#	generates	levels	to	indicate	which	group	each	data	point	belongs	to

levels	<-	gl(4,	nrow(anscombe))

levels

[1]	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3

[34]	4	4	4	4	4	4	4	4	4	4	4

Levels:	1	2	3	4

#	Group	anscombe	into	a	data	frame

mydata	<-	with(anscombe,	data.frame(x=c(x1,x2,x3,x4),	y=c(y1,y2,y3,y4),

				mygroup=levels))

mydata

x		y	mygroup

1	10	8.04		1

2	8	6.95		1

3	13	7.58		1

4	9	8.81		1

…

41	19	12.50		4

42	8	5.56		4

43	8	7.91		4

44	8	6.89		4

#	Make	scatterplots	using	the	ggplot2	package

library(ggplot2)

theme_set(theme_bw())	#	set	plot	color	theme

#	create	the	four	plots	of	Figure	3.7

ggplot(mydata,	aes(x,y))	+

		geom_point(size=4)	+

		geom_smooth(method=“lm”,	fill=NA,	fullrange=TRUE)	+

		facet_wrap(˜mygroup)

3.2.2	Dirty	Data

This	section	addresses	how	dirty	data	can	be	detected	in	the	data	exploration	phase	with
visualizations.	In	general,	analysts	should	look	for	anomalies,	verify	the	data	with	domain
knowledge,	and	decide	the	most	appropriate	approach	to	clean	the	data.

Consider	a	scenario	in	which	a	bank	is	conducting	data	analyses	of	its	account	holders	to
gauge	customer	retention.	Figure	3.8	shows	the	age	distribution	of	the	account	holders.

Figure	3.8	Age	distribution	of	bank	account	holders

If	 the	age	data	 is	 in	 a	vector	 called	age,	 the	graph	 can	be	 created	with	 the	 following	R
script:
hist(age,	breaks=100,	main=“Age	Distribution	of	Account	Holders”,

		xlab=“Age”,	ylab=“Frequency”,	col=“gray”)

The	figure	shows	that	the	median	age	of	the	account	holders	is	around	40.	A	few	accounts
with	account	holder	age	less	than	10	are	unusual	but	plausible.	These	could	be	custodial
accounts	 or	 college	 savings	 accounts	 set	 up	 by	 the	 parents	 of	 young	 children.	 These
accounts	should	be	retained	for	future	analyses.

However,	the	left	side	of	the	graph	shows	a	huge	spike	of	customers	who	are	zero	years
old	 or	 have	 negative	 ages.	 This	 is	 likely	 to	 be	 evidence	 of	missing	 data.	 One	 possible
explanation	is	 that	 the	null	age	values	could	have	been	replaced	by	0	or	negative	values
during	the	data	input.	Such	an	occurrence	may	be	caused	by	entering	age	in	a	text	box	that
only	 allows	 numbers	 and	 does	 not	 accept	 empty	 values.	 Or	 it	 might	 be	 caused	 by
transferring	 data	 among	 several	 systems	 that	 have	 different	 definitions	 for	 null	 values
(such	as	NULL,	NA,	0,	–1,	or	–2).	Therefore,	data	cleansing	needs	to	be	performed	over
the	accounts	with	abnormal	age	values.	Analysts	should	take	a	closer	look	at	the	records	to
decide	 if	 the	 missing	 data	 should	 be	 eliminated	 or	 if	 an	 appropriate	 age	 value	 can	 be
determined	using	other	available	information	for	each	of	the	accounts.

In	 R,	 the	 is.na()	 function	 provides	 tests	 for	 missing	 values.	 The	 following	 example
creates	 a	 vector	 x	 where	 the	 fourth	 value	 is	 not	 available	 (NA).	 The	 is.na()	 function
returns	TRUE	at	each	NA	value	and	FALSE	otherwise.
x	<-	c(1,	2,	3,	NA,	4)

is.na(x)

[1]	FALSE	FALSE	FALSE	TRUE	FALSE

Some	arithmetic	functions,	such	as	mean(),	applied	to	data	containing	missing	values	can
yield	an	NA	result.	To	prevent	this,	set	the	na.rm	parameter	to	TRUE	to	remove	the	missing
value	during	the	function’s	execution.
mean(x)

[1]	NA

mean(x,	na.rm=TRUE)

[1]	2.5

The	na.exclude()	function	returns	the	object	with	incomplete	cases	removed.
DF	<-	data.frame(x	=	c(1,	2,	3),	y	=	c(10,	20,	NA))

DF

x	y

1	1	10

2	2	20

3	3	NA

DF1	<-	na.exclude(DF)

DF1

x	y

1	1	10

2	2	20

Account	 holders	 older	 than	 100	 may	 be	 due	 to	 bad	 data	 caused	 by	 typos.	 Another
possibility	is	that	these	accounts	may	have	been	passed	down	to	the	heirs	of	the	original
account	holders	without	being	updated.	In	this	case,	one	needs	to	further	examine	the	data
and	 conduct	 data	 cleansing	 if	 necessary.	 The	 dirty	 data	 could	 be	 simply	 removed	 or
filtered	out	with	an	age	threshold	for	future	analyses.	If	removing	records	is	not	an	option,
the	analysts	can	look	for	patterns	within	the	data	and	develop	a	set	of	heuristics	to	attack
the	 problem	 of	 dirty	 data.	 For	 example,	 wrong	 age	 values	 could	 be	 replaced	 with
approximation	based	on	 the	nearest	neighbor—the	record	 that	 is	 the	most	similar	 to	 the
record	in	question	based	on	analyzing	the	differences	in	all	the	other	variables	besides	age.

Figure	 3.9	 presents	 another	 example	 of	 dirty	 data.	 The	 distribution	 shown	 here
corresponds	to	the	age	of	mortgages	in	a	bank’s	home	loan	portfolio.	The	mortgage	age	is
calculated	 by	 subtracting	 the	 origination	 date	 of	 the	 loan	 from	 the	 current	 date.	 The
vertical	axis	corresponds	to	the	number	of	mortgages	at	each	mortgage	age.

Figure	3.9	Distribution	of	mortgage	in	years	since	origination	from	a	bank’s	home	loan
portfolio

If	the	data	is	in	a	vector	called	mortgage,	Figure	3.9	can	be	produced	by	the	following	R
script.
hist(mortgage,	breaks=10,	xlab=“Mortgage	Age”,	col=“gray”,

		main=“Portfolio	Distribution,	Years	Since	Origination”)

Figure	3.9	shows	that	the	loans	are	no	more	than	10	years	old,	and	these	10-year-old	loans
have	 a	 disproportionate	 frequency	 compared	 to	 the	 rest	 of	 the	 population.	One	 possible
explanation	is	that	the	10-year-old	loans	do	not	only	include	loans	originated	10	years	ago,
but	 also	 those	 originated	 earlier	 than	 that.	 In	 other	words,	 the	 10	 in	 the	 x-axis	 actually
means	≥	10.	This	sometimes	happens	when	data	is	ported	from	one	system	to	another	or
because	the	data	provider	decided,	for	some	reason,	not	to	distinguish	loans	that	are	more
than	10	years	old.	Analysts	need	to	study	the	data	further	and	decide	the	most	appropriate
way	to	perform	data	cleansing.

Data	analysts	should	perform	sanity	checks	against	domain	knowledge	and	decide	if	 the
dirty	data	needs	to	be	eliminated.	Consider	the	task	to	find	out	the	probability	of	mortgage
loan	default.	If	the	past	observations	suggest	that	most	defaults	occur	before	about	the	4th
year	and	10-year-old	mortgages	rarely	default,	 it	may	be	safe	 to	eliminate	 the	dirty	data
and	assume	that	the	defaulted	loans	are	less	than	10	years	old.	For	other	analyses,	it	may
become	necessary	to	track	down	the	source	and	find	out	the	true	origination	dates.

Dirty	data	can	occur	due	to	acts	of	omission.	In	the	sales	data	used	at	 the	beginning	of
this	 chapter,	 it	 was	 seen	 that	 the	minimum	 number	 of	 orders	 was	 1	 and	 the	minimum
annual	 sales	 amount	 was	 $30.02.	 Thus,	 there	 is	 a	 strong	 possibility	 that	 the	 provided
dataset	did	not	include	the	sales	data	on	all	customers,	just	the	customers	who	purchased
something	during	the	past	year.

3.2.3	Visualizing	a	Single	Variable
Using	visual	representations	of	data	is	a	hallmark	of	exploratory	data	analyses:	letting	the
data	 speak	 to	 its	 audience	 rather	 than	 imposing	 an	 interpretation	 on	 the	 data	 a	 priori.

Sections	3.2.3	and	3.2.4	examine	ways	of	displaying	data	to	help	explain	the	underlying
distributions	of	a	single	variable	or	the	relationships	of	two	or	more	variables.

R	has	many	functions	available	to	examine	a	single	variable.	Some	of	these	functions	are
listed	in	Table	3.4.

Table	3.4	Example	Functions	for	Visualizing	a	Single	Variable

Function Purpose

plot(data)
Scatterplot	where	x	is	the	index	and	y	is	the	value;	suitable	for

low-volume	data
barplot(data) Barplot	with	vertical	or	horizontal	bars
dotchart(data) Cleveland	dot	plot	[12]
hist(data) Histogram

plot(density(data)) Density	plot	(a	continuous	histogram)
stem(data) Stem-and-leaf	plot
rug(data) Add	a	rug	representation	(1-d	plot)	of	the	data	to	an	existing	plot

Dotchart	and	Barplot

Dotchart	 and	 barplot	 portray	 continuous	 values	 with	 labels	 from	 a	 discrete	 variable.	 A
dotchart	 can	 be	 created	 in	 R	 with	 the	 function	 dotchart(x,	 label=…),	 where	 x	 is	 a
numeric	vector	and	label	is	a	vector	of	categorical	labels	for	x.	A	barplot	can	be	created
with	 the	barplot(height)	 function,	where	height	 represents	 a	vector	or	matrix.	Figure
3.10	shows	(a)	a	dotchart	and	(b)	a	barplot	based	on	 the	mtcars	dataset,	which	 includes
the	 fuel	 consumption	 and	 10	 aspects	 of	 automobile	 design	 and	 performance	 of	 32
automobiles.	This	dataset	comes	with	the	standard	R	distribution.

Figure	3.10	(a)	Dotchart	on	the	miles	per	gallon	of	cars	and	(b)	Barplot	on	the	distribution
of	car	cylinder	counts

The	plots	in	Figure	3.10	can	be	produced	with	the	following	R	code.
data(mtcars)

dotchart(mtcars$mpg,labels=row.names(mtcars),cex=.7,

			main=“Miles	Per	Gallon	(MPG)	of	Car	Models”,

			xlab=“MPG”)

barplot(table(mtcars$cyl),	main=“Distribution	of	Car	Cylinder	Counts”,

			xlab=“Number	of	Cylinders”)

Histogram	and	Density	Plot

Figure	3.11(a)	 includes	 a	 histogram	of	 household	 income.	The	 histogram	 shows	 a	 clear
concentration	of	low	household	incomes	on	the	left	and	the	long	tail	of	the	higher	incomes
on	the	right.

Figure	3.11	(a)	Histogram	and	(b)	Density	plot	of	household	income

Figure	3.11(b)	shows	a	density	plot	of	 the	 logarithm	of	household	income	values,	which
emphasizes	the	distribution.	The	income	distribution	is	concentrated	in	the	center	portion
of	the	graph.	The	code	to	generate	the	two	plots	in	Figure	3.11	is	provided	next.	The	rug()
function	creates	a	one-dimensional	density	plot	on	the	bottom	of	the	graph	to	emphasize
the	distribution	of	the	observation.
#	randomly	generate	4000	observations	from	the	log	normal	distribution

income	<-	rlnorm(4000,	meanlog	=	4,	sdlog	=	0.7)

summary(income)

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.	

4.301	33.720	54.970	70.320	88.800	659.800	

income	<-	1000*income

summary(income)

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.	

4301	33720	54970	70320	88800	659800

#	plot	the	histogram

hist(income,	breaks=500,	xlab=“Income”,	main=“Histogram	of	Income”)

#	density	plot

plot(density(log10(income),	adjust=0.5),

		main=“Distribution	of	Income	(log10	scale)”)

#	add	rug	to	the	density	plot

rug(log10(income))

In	 the	 data	 preparation	 phase	 of	 the	 Data	 Analytics	 Lifecycle,	 the	 data	 range	 and
distribution	can	be	obtained.	If	the	data	is	skewed,	viewing	the	logarithm	of	the	data	(if	it’s
all	positive)	can	help	detect	structures	that	might	otherwise	be	overlooked	in	a	graph	with
a	regular,	nonlogarithmic	scale.

When	 preparing	 the	 data,	 one	 should	 look	 for	 signs	 of	 dirty	 data,	 as	 explained	 in	 the
previous	 section.	Examining	 if	 the	 data	 is	 unimodal	 or	multimodal	will	 give	 an	 idea	 of
how	many	distinct	populations	with	different	behavior	patterns	might	be	mixed	 into	 the
overall	 population.	 Many	 modeling	 techniques	 assume	 that	 the	 data	 follows	 a	 normal
distribution.	 Therefore,	 it	 is	 important	 to	 know	 if	 the	 available	 dataset	 can	 match	 that
assumption	before	applying	any	of	those	modeling	techniques.

Consider	a	density	plot	of	diamond	prices	(in	USD).	Figure	3.12(a)	contains	 two	density
plots	for	premium	and	ideal	cuts	of	diamonds.	The	group	of	premium	cuts	is	shown	in	red,
and	the	group	of	ideal	cuts	is	shown	in	blue.	The	range	of	diamond	prices	is	wide—in	this
case	ranging	from	around	$300	to	almost	$20,000.	Extreme	values	are	typical	of	monetary
data	such	as	income,	customer	value,	tax	liabilities,	and	bank	account	sizes.

Figure	3.12	Density	plots	of	(a)	diamond	prices	and	(b)	the	logarithm	of	diamond	prices

Figure	3.12(b)	shows	more	detail	of	the	diamond	prices	than	Figure	3.12(a)	by	taking	the
logarithm.	The	 two	humps	 in	 the	premium	cut	represent	 two	distinct	groups	of	diamond
prices:	 One	 group	 centers	 around	 	 (where	 the	 price	 is	 about	 $794),	 and	 the
other	centers	around	 	(where	the	price	is	about	$5,012).	The	ideal	cut	contains
three	humps,	centering	around	2.9,	3.3,	and	3.7	respectively.

The	R	 script	 to	 generate	 the	 plots	 in	 Figure	 3.12	 is	 shown	 next.	 The	 diamonds	 dataset
comes	with	the	ggplot2	package.
library(“ggplot2”)

data(diamonds)	#	load	the	diamonds	dataset	from	ggplot2

#	Only	keep	the	premium	and	ideal	cuts	of	diamonds

niceDiamonds	<-	diamonds[diamonds$cut==“Premium”	|

							diamonds$cut==“Ideal”,]

summary(niceDiamonds$cut)

		Fair		Good	Very	Good	Premium		Ideal	

		0			0			0		13791		21551

#	plot	density	plot	of	diamond	prices

ggplot(niceDiamonds,	aes(x=price,	fill=cut))	+

geom_density(alpha	=	.3,	color=NA)

#	plot	density	plot	of	the	log10	of	diamond	prices

ggplot(niceDiamonds,	aes(x=log10(price),	fill=cut))	+

geom_density(alpha	=	.3,	color=NA)

As	 an	 alternative	 to	 ggplot2,	 the	 lattice	 package	 provides	 a	 function	 called

densityplot()	for	making	simple	density	plots.

3.2.4	Examining	Multiple	Variables
A	scatterplot	(shown	previously	in	Figure	3.1	and	Figure	3.5)	is	a	simple	and	widely	used
visualization	 for	 finding	 the	 relationship	 among	 multiple	 variables.	 A	 scatterplot	 can
represent	 data	with	up	 to	 five	variables	 using	x-axis,	 y-axis,	 size,	 color,	 and	 shape.	But
usually	 only	 two	 to	 four	 variables	 are	 portrayed	 in	 a	 scatterplot	 to	minimize	 confusion.
When	examining	a	scatterplot,	one	needs	to	pay	close	attention	to	the	possible	relationship
between	 the	 variables.	 If	 the	 functional	 relationship	 between	 the	 variables	 is	 somewhat
pronounced,	the	data	may	roughly	lie	along	a	straight	line,	a	parabola,	or	an	exponential
curve.	 If	 variable	 y	 is	 related	 exponentially	 to	 x,	 then	 the	 plot	 of	 x	 versus	 log(y)	 is
approximately	 linear.	 If	 the	 plot	 looks	 more	 like	 a	 cluster	 without	 a	 pattern,	 the
corresponding	variables	may	have	a	weak	relationship.

The	scatterplot	in	Figure	3.13	portrays	the	relationship	of	two	variables:	x	and	y.	The	red
line	shown	on	the	graph	is	the	fitted	line	from	the	linear	regression.	Linear	regression	will
be	revisited	in	Chapter	6,	“Advanced	Analytical	Theory	and	Methods:	Regression.”	Figure
3.13	shows	that	the	regression	line	does	not	fit	the	data	well.	This	is	a	case	in	which	linear
regression	cannot	model	the	relationship	between	the	variables.	Alternative	methods	such
as	 the	loess()	 function	 can	 be	 used	 to	 fit	 a	 nonlinear	 line	 to	 the	 data.	 The	 blue	 curve
shown	 on	 the	 graph	 represents	 the	 LOESS	 curve,	which	 fits	 the	 data	 better	 than	 linear
regression.

Figure	3.13	Examining	two	variables	with	regression

The	 R	 code	 to	 produce	 Figure	 3.13	 is	 as	 follows.	 The	 runif(75,0,10)	 generates	 75
numbers	between	0	to	10	with	random	deviates,	and	the	numbers	conform	to	the	uniform
distribution.	 The	 rnorm(75,0,20)	 generates	 75	 numbers	 that	 conform	 to	 the	 normal
distribution,	 with	 the	 mean	 equal	 to	 0	 and	 the	 standard	 deviation	 equal	 to	 20.	 The
points()	 function	 is	a	generic	 function	 that	draws	a	sequence	of	points	at	 the	specified
coordinates.	Parameter	type=“l”	tells	the	function	to	draw	a	solid	line.	The	col	parameter

sets	the	color	of	the	line,	where	2	represents	the	red	color	and	4	represents	the	blue	color.
#	75	numbers	between	0	and	10	of	uniform	distribution

x	<-	runif(75,	0,	10)

x	<-	sort(x)

y	<-	200	+	x^3	-	10	*	x^2	+	x	+	rnorm(75,	0,	20)

lr	<-	lm(y	˜	x)		#	linear	regression

poly	<-	loess(y	˜	x)	#	LOESS

fit	<-	predict(poly)	#	fit	a	nonlinear	line

plot(x,y)

#	draw	the	fitted	line	for	the	linear	regression

points(x,	lr$coefficients[1]	+	lr$coefficients[2]	*	x,

		type	=	“l”,	col	=	2)

#	draw	the	fitted	line	with	LOESS

points(x,	fit,	type	=	“l”,	col	=	4)

Dotchart	and	Barplot

Dotchart	and	barplot	 from	the	previous	section	can	visualize	multiple	variables.	Both	of
them	use	color	as	an	additional	dimension	for	visualizing	the	data.

For	the	same	mtcars	dataset,	Figure	3.14	shows	a	dotchart	that	groups	vehicle	cylinders	at
the	 y-axis	 and	 uses	 colors	 to	 distinguish	 different	 cylinders.	 The	 vehicles	 are	 sorted
according	to	their	MPG	values.	The	code	to	generate	Figure	3.14	is	shown	next.
#	sort	by	mpg

cars	<-	mtcars[order(mtcars$mpg),]

#	grouping	variable	must	be	a	factor

cars$cyl	<-	factor(cars$cyl)

cars$color[cars$cyl==4]	<-	“red”

cars$color[cars$cyl==6]	<-	“blue”

cars$color[cars$cyl==8]	<-	“darkgreen”

dotchart(cars$mpg,	labels=row.names(cars),	cex=.7,	groups=	cars$cyl,

		main=“Miles	Per	Gallon	(MPG)	of	Car	Models\nGrouped	by	Cylinder”,

		xlab=“Miles	Per	Gallon”,	color=cars$color,	gcolor=“black”)

Figure	3.14	Dotplot	to	visualize	multiple	variables

The	barplot	in	Figure	3.15	visualizes	the	distribution	of	car	cylinder	counts	and	number	of
gears.	The	x-axis	represents	the	number	of	cylinders,	and	the	color	represents	the	number
of	gears.	The	code	to	generate	Figure	3.15	is	shown	next.
counts	<-	table(mtcars$gear,	mtcars$cyl)

barplot(counts,	main=“Distribution	of	Car	Cylinder	Counts	and	Gears”,

		xlab=“Number	of	Cylinders”,	ylab=“Counts”,

		col=c(“#0000FFFF”,	“#0080FFFF”,	“#00FFFFFF”),

		legend	=	rownames(counts),	beside=TRUE,

		args.legend	=	list(x=“top”,	title	=	“Number	of	Gears”))

Figure	3.15	Barplot	to	visualize	multiple	variables

Box-and-Whisker	Plot

Box-and-whisker	plots	show	the	distribution	of	a	continuous	variable	for	each	value	of	a
discrete	 variable.	 The	 box-and-whisker	 plot	 in	 Figure	 3.16	 visualizes	 mean	 household
incomes	 as	 a	 function	 of	 region	 in	 the	United	 States.	 The	 first	 digit	 of	 the	U.S.	 postal
(“ZIP”)	 code	 corresponds	 to	 a	geographical	 region	 in	 the	United	States.	 In	Figure	3.16,
each	data	point	corresponds	to	the	mean	household	income	from	a	particular	zip	code.	The
horizontal	 axis	 represents	 the	 first	 digit	 of	 a	 zip	 code,	 ranging	 from	 0	 to	 9,	 where	 0
corresponds	 to	 the	 northeast	 region	 of	 the	United	 States	 (such	 as	Maine,	Vermont,	 and
Massachusetts),	 and	 9	 corresponds	 to	 the	 southwest	 region	 (such	 as	 California	 and
Hawaii).	 The	 vertical	 axis	 represents	 the	 logarithm	 of	 mean	 household	 incomes.	 The
logarithm	is	taken	to	better	visualize	the	distribution	of	the	mean	household	incomes.

Figure	3.16	A	box-and-whisker	plot	of	mean	household	income	and	geographical	region

In	 this	 figure,	 the	 scatterplot	 is	 displayed	 beneath	 the	 box-and-whisker	 plot,	with	 some
jittering	for	the	overlap	points	so	that	each	line	of	points	widens	into	a	strip.	The	“box”	of
the	box-and-whisker	 shows	 the	 range	 that	 contains	 the	central	50%	of	 the	data,	 and	 the
line	inside	the	box	is	the	location	of	the	median	value.	The	upper	and	lower	hinges	of	the
boxes	correspond	 to	 the	 first	 and	 third	quartiles	of	 the	data.	The	upper	whisker	 extends
from	 the	 hinge	 to	 the	 highest	 value	 that	 is	 within	 1.5	 *	 IQR	 of	 the	 hinge.	 The	 lower
whisker	extends	from	the	hinge	to	the	lowest	value	within	1.5	*	IQR	of	the	hinge.	IQR	is
the	inter-quartile	range,	as	discussed	in	Section	3.1.4.	The	points	outside	the	whiskers	can
be	considered	possible	outliers.

The	graph	shows	how	household	 income	varies	by	 region.	The	highest	median	 incomes
are	in	region	0	and	region	9.	Region	0	is	slightly	higher,	but	the	boxes	for	the	two	regions
overlap	 enough	 that	 the	 difference	 between	 the	 two	 regions	 probably	 is	 not	 significant.
The	 lowest	 household	 incomes	 tend	 to	 be	 in	 region	 7,	 which	 includes	 states	 such	 as
Louisiana,	Arkansas,	and	Oklahoma.

Assuming	a	data	frame	called	DF	contains	two	columns	(MeanHouseholdIncome	and	Zip1),
the	following	R	script	uses	the	ggplot2	library	[11]	to	plot	a	graph	that	is	similar	to	Figure
3.16.
library(ggplot2)

#	plot	the	jittered	scatterplot	w/	boxplot

#	color-code	points	with	zip	codes

#	the	outlier.size=0	prevents	the	boxplot	from	plotting	the	outlier

ggplot(data=DF,	aes(x=as.factor(Zip1),	y=log10(MeanHouseholdIncome)))	+

geom_point(aes(color=factor(Zip1)),	alpha=0.2,	position=“jitter”)	+

geom_boxplot(outlier.size=0,	alpha=0.1)	+

guides(colour=FALSE)	+

ggtitle	(“Mean	Household	Income	by	Zip	Code”)

Alternatively,	one	can	create	a	simple	box-and-whisker	plot	with	the	boxplot()	function
provided	by	the	R	base	package.

Hexbinplot	for	Large	Datasets

This	 chapter	 has	 shown	 that	 scatterplot	 as	 a	 popular	 visualization	 can	 visualize	 data
containing	one	or	more	variables.	But	one	should	be	careful	about	using	it	on	high-volume
data.	If	there	is	too	much	data,	the	structure	of	the	data	may	become	difficult	to	see	in	a
scatterplot.	 Consider	 a	 case	 to	 compare	 the	 logarithm	 of	 household	 income	 against	 the
years	of	education,	as	shown	in	Figure	3.17.	The	cluster	 in	 the	scatterplot	on	 the	 left	 (a)
suggests	a	somewhat	linear	relationship	of	the	two	variables.	However,	one	cannot	really
see	the	structure	of	how	the	data	is	distributed	inside	the	cluster.	This	is	a	Big	Data	type	of
problem.	 Millions	 or	 billions	 of	 data	 points	 would	 require	 different	 approaches	 for
exploration,	visualization,	and	analysis.

Figure	3.17	(a)	Scatterplot	and	(b)	Hexbinplot	of	household	income	against	years	of
education

Although	 color	 and	 transparency	 can	 be	 used	 in	 a	 scatterplot	 to	 address	 this	 issue,	 a
hexbinplot	 is	 sometimes	 a	 better	 alternative.	 A	 hexbinplot	 combines	 the	 ideas	 of
scatterplot	 and	histogram.	Similar	 to	 a	 scatterplot,	 a	hexbinplot	visualizes	data	 in	 the	x-
axis	 and	 y-axis.	 Data	 is	 placed	 into	 hexbins,	 and	 the	 third	 dimension	 uses	 shading	 to
represent	the	concentration	of	data	in	each	hexbin.

In	Figure	3.17(b),	the	same	data	is	plotted	using	a	hexbinplot.	The	hexbinplot	shows	that
the	data	 is	more	densely	clustered	 in	a	streak	 that	 runs	 through	the	center	of	 the	cluster,
roughly	 along	 the	 regression	 line.	 The	 biggest	 concentration	 is	 around	 12	 years	 of
education,	extending	to	about	15	years.

In	 Figure	 3.17,	 note	 the	 outlier	 data	 at	 MeanEducation=0.	 These	 data	 points	 may
correspond	to	some	missing	data	that	needs	further	cleansing.

Assuming	 the	 two	 variables	MeanHouseholdIncome	 and	MeanEducation	 are	 from	 a	 data
frame	named	zcta,	the	scatterplot	of	Figure	3.17(a)	is	plotted	by	the	following	R	code.
#	plot	the	data	points

plot(log10(MeanHouseholdIncome)	˜	MeanEducation,	data=zcta)

#	add	a	straight	fitted	line	of	the	linear	regression

abline(lm(log10(MeanHouseholdIncome)	˜	MeanEducation,	data=zcta),

col=‘red’)

Using	the	zcta	data	frame,	the	hexbinplot	of	Figure	3.17(b)	is	plotted	by	the	following	R
code.	Running	the	code	requires	the	use	of	the	hexbin	package,	which	can	be	installed	by
running	install	.packages(“hexbin”).
library(hexbin)

#	“g”	adds	the	grid,	“r”	adds	the	regression	line

#	sqrt	transform	on	the	count	gives	more	dynamic	range	to	the	shading

#	inv	provides	the	inverse	transformation	function	of	trans

hexbinplot(log10(MeanHouseholdIncome)	˜	MeanEducation,

data=zcta,	trans	=	sqrt,	inv	=	function(x)	x^2,	type=c(“g”,	“r”))

Scatterplot	Matrix

A	 scatterplot	 matrix	 shows	 many	 scatterplots	 in	 a	 compact,	 side-by-side	 fashion.	 The
scatterplot	 matrix,	 therefore,	 can	 visually	 represent	 multiple	 attributes	 of	 a	 dataset	 to
explore	their	relationships,	magnify	differences,	and	disclose	hidden	patterns.

Fisher’s	iris	dataset	 [13]	 includes	 the	measurements	 in	centimeters	of	 the	sepal	 length,
sepal	width,	petal	 length,	 and	petal	width	 for	50	 flowers	 from	 three	 species	of	 iris.	The
three	species	are	setosa,	versicolor,	and	virginica.	The	iris	dataset	comes	with	the	standard
R	distribution.

In	Figure	3.18,	 all	 the	 variables	 of	 Fisher’s	 iris	 dataset	 (sepal	 length,	 sepal	width,	 petal
length,	 and	petal	width)	 are	 compared	 in	a	 scatterplot	matrix.	The	 three	different	 colors
represent	 three	 species	 of	 iris	 flowers.	 The	 scatterplot	 matrix	 in	 Figure	 3.18	 allows	 its
viewers	to	compare	the	differences	across	the	iris	species	for	any	pairs	of	attributes.

Figure	3.18	Scatterplot	matrix	of	Fisher’s	[13]	iris	dataset

Consider	the	scatterplot	from	the	first	row	and	third	column	of	Figure	3.18,	where	sepal
length	 is	 compared	 against	 petal	 length.	The	horizontal	 axis	 is	 the	 petal	 length,	 and	 the
vertical	axis	is	the	sepal	length.	The	scatterplot	shows	that	versicolor	and	virginica	 share
similar	sepal	and	petal	lengths,	although	the	latter	has	longer	petals.	The	petal	lengths	of
all	setosa	are	about	the	same,	and	the	petal	lengths	are	remarkably	shorter	than	the	other
two	 species.	The	 scatterplot	 shows	 that	 for	versicolor	 and	virginica,	 sepal	 length	 grows
linearly	with	the	petal	length.

The	R	code	for	generating	the	scatterplot	matrix	is	provided	next.
#	define	the	colors

colors	<-	c(“red”,	“green”,	“blue”)

#	draw	the	plot	matrix

pairs(iris[1:4],	main	=	“Fisher’s	Iris	Dataset”,

		pch	=	21,	bg	=	colors[unclass(iris$Species)])

#	set	graphical	parameter	to	clip	plotting	to	the	figure	region

par(xpd	=	TRUE)

#	add	legend

legend(0.2,	0.02,	horiz	=	TRUE,	as.vector(unique(iris$Species)),

		fill	=	colors,	bty	=	“n”)

The	vector	colors	defines	the	color	scheme	for	the	plot.	It	could	be	changed	to	something
like	colors	<-	c(“gray50”,	“white”,	“black”)	to	make	the	scatterplots	grayscale.

Analyzing	a	Variable	over	Time

Visualizing	a	variable	over	time	is	the	same	as	visualizing	any	pair	of	variables,	but	in	this
case	the	goal	is	to	identify	time-specific	patterns.

Figure	 3.19	 plots	 the	 monthly	 total	 numbers	 of	 international	 airline	 passengers	 (in
thousands)	 from	January	1940	 to	December	1960.	Enter	plot(AirPassengers)	 in	 the	R
console	to	obtain	a	similar	graph.	The	plot	shows	that,	for	each	year,	a	large	peak	occurs
mid-year	around	July	and	August,	and	a	small	peak	happens	around	the	end	of	the	year,
possibly	due	to	the	holidays.	Such	a	phenomenon	is	referred	to	as	a	seasonality	effect.

Figure	3.19	Airline	passenger	counts	from	1949	to	1960

Additionally,	the	overall	trend	is	that	the	number	of	air	passengers	steadily	increased	from
1949	 to	 1960.	 Chapter	 8,	 “Advanced	 Analytical	 Theory	 and	 Methods:	 Time	 Series
Analysis,”	discusses	the	analysis	of	such	datasets	in	greater	detail.

3.2.5	Data	Exploration	Versus	Presentation
Using	 visualization	 for	 data	 exploration	 is	 different	 from	 presenting	 results	 to
stakeholders.	 Not	 every	 type	 of	 plot	 is	 suitable	 for	 all	 audiences.	 Most	 of	 the	 plots
presented	earlier	try	to	detail	the	data	as	clearly	as	possible	for	data	scientists	to	identify
structures	 and	 relationships.	 These	 graphs	 are	 more	 technical	 in	 nature	 and	 are	 better
suited	to	technical	audiences	such	as	data	scientists.	Nontechnical	stakeholders,	however,
generally	prefer	simple,	clear	graphics	that	focus	on	the	message	rather	than	the	data.

Figure	3.20	shows	the	density	plot	on	the	distribution	of	account	values	from	a	bank.	The
data	has	been	converted	to	the	log10	scale.	The	plot	includes	a	rug	on	the	bottom	to	show
the	distribution	of	the	variable.	This	graph	is	more	suitable	for	data	scientists	and	business
analysts	because	it	provides	information	that	can	be	relevant	to	the	downstream	analysis.
The	 graph	 shows	 that	 the	 transformed	 account	 values	 follow	 an	 approximate	 normal
distribution,	 in	 the	 range	 from	 $100	 to	 $10,000,000.	 The	 median	 account	 value	 is
approximately	$30,000	(),	with	 the	majority	of	 the	accounts	between	$1,000	 ()	and
$1,000,000	().

Figure	3.20	Density	plots	are	better	to	show	to	data	scientists

Density	plots	are	fairly	technical,	and	they	contain	so	much	information	that	 they	would
be	difficult	to	explain	to	less	technical	stakeholders.	For	example,	it	would	be	challenging
to	 explain	 why	 the	 account	 values	 are	 in	 the	 log10	 scale,	 and	 such	 information	 is	 not
relevant	to	stakeholders.	The	same	message	can	be	conveyed	by	partitioning	the	data	into
log-like	bins	and	presenting	it	as	a	histogram.	As	can	be	seen	in	Figure	3.21,	the	bulk	of
the	accounts	are	in	the	$1,000–1,000,000	range,	with	the	peak	concentration	in	the	$10–
50K	range,	extending	to	$500K.	This	portrayal	gives	the	stakeholders	a	better	sense	of	the
customer	base	than	the	density	plot	shown	in	Figure	3.20.

Figure	3.21	Histograms	are	better	to	show	to	stakeholders

Note	that	 the	bin	sizes	should	be	carefully	chosen	to	avoid	distortion	of	 the	data.	In	this
example,	the	bins	in	Figure	3.21	are	chosen	based	on	observations	from	the	density	plot	in
Figure	 3.20.	Without	 the	 density	 plot,	 the	 peak	 concentration	might	 be	 just	 due	 to	 the

somewhat	arbitrary	appearing	choices	for	the	bin	sizes.

This	simple	example	addresses	the	different	needs	of	two	groups	of	audience:	analysts	and
stakeholders.	Chapter	12,	“The	Endgame,	or	Putting	It	All	Together,”	further	discusses	the
best	practices	of	delivering	presentations	to	these	two	groups.

Following	is	the	R	code	to	generate	the	plots	in	Figure	3.20	and	Figure	3.21.
#	Generate	random	log	normal	income	data

income	=	rlnorm(5000,	meanlog=log(40000),	sdlog=log(5))

#	Part	I:	Create	the	density	plot

plot(density(log10(income),	adjust=0.5),

		main=“Distribution	of	Account	Values	(log10	scale)”)

#	Add	rug	to	the	density	plot

rug(log10(income))

#	Part	II:	Make	the	histogram

#	Create	“log-like	bins”

breaks	=	c(0,	1000,	5000,	10000,	50000,	100000,	5e5,	1e6,	2e7)

#	Create	bins	and	label	the	data

bins	=	cut(income,	breaks,	include.lowest=T,

			labels	=	c(“<	1K”,	“1-5K”,	“5-10K”,	“10-50K”,

						“50-100K”,	“100-500K”,	“500K-1M”,	“>	1M”))

#	Plot	the	bins

plot(bins,	main	=	“Distribution	of	Account	Values”,

		xlab	=	“Account	value	($	USD)”,

		ylab	=	“Number	of	Accounts”,	col=“blue”)

3.3	Statistical	Methods	for	Evaluation
Visualization	 is	 useful	 for	 data	 exploration	 and	 presentation,	 but	 statistics	 is	 crucial
because	it	may	exist	throughout	the	entire	Data	Analytics	Lifecycle.	Statistical	techniques
are	 used	 during	 the	 initial	 data	 exploration	 and	 data	 preparation,	 model	 building,
evaluation	 of	 the	 final	 models,	 and	 assessment	 of	 how	 the	 new	 models	 improve	 the
situation	when	deployed	in	the	field.	In	particular,	statistics	can	help	answer	the	following
questions	for	data	analytics:

	
Model	Building	and	Planning

What	are	the	best	input	variables	for	the	model?
Can	the	model	predict	the	outcome	given	the	input?

Model	Evaluation
Is	the	model	accurate?
Does	the	model	perform	better	than	an	obvious	guess?
Does	the	model	perform	better	than	another	candidate	model?

Model	Deployment
Is	the	prediction	sound?
Does	the	model	have	the	desired	effect	(such	as	reducing	the	cost)?

This	section	discusses	some	useful	statistical	tools	that	may	answer	these	questions.

3.3.1	Hypothesis	Testing
When	 comparing	 populations,	 such	 as	 testing	 or	 evaluating	 the	 difference	 of	 the	means
from	two	samples	of	data	(Figure	3.22),	a	common	technique	to	assess	 the	difference	or
the	significance	of	the	difference	is	hypothesis	testing.

Figure	3.22	Distributions	of	two	samples	of	data

The	basic	concept	of	hypothesis	testing	is	to	form	an	assertion	and	test	it	with	data.	When
performing	hypothesis	tests,	the	common	assumption	is	that	there	is	no	difference	between
two	 samples.	 This	 assumption	 is	 used	 as	 the	 default	 position	 for	 building	 the	 test	 or
conducting	a	 scientific	 experiment.	Statisticians	 refer	 to	 this	 as	 the	null	hypothesis	 ().
The	 alternative	 hypothesis	 ()	 is	 that	 there	 is	 a	 difference	 between	 two	 samples.	 For
example,	if	the	task	is	to	identify	the	effect	of	drug	A	compared	to	drug	B	on	patients,	the
null	hypothesis	and	alternative	hypothesis	would	be	this.

	
:	Drug	A	and	drug	B	have	the	same	effect	on	patients.
:	Drug	A	has	a	greater	effect	than	drug	B	on	patients.

If	the	task	is	to	identify	whether	advertising	Campaign	C	is	effective	on
reducing	customer	churn,	the	null	hypothesis	and	alternative	hypothesis
would	be	as	follows.

:	Campaign	C	does	not	reduce	customer	churn	better	than	the	current	campaign
method.
:	Campaign	C	does	reduce	customer	churn	better	than	the	current	campaign.

It	 is	 important	to	state	the	null	hypothesis	and	alternative	hypothesis,	because	misstating
them	 is	 likely	 to	 undermine	 the	 subsequent	 steps	 of	 the	 hypothesis	 testing	 process.	 A
hypothesis	test	leads	to	either	rejecting	the	null	hypothesis	in	favor	of	the	alternative	or	not
rejecting	the	null	hypothesis.

Table	 3.5	 includes	 some	 examples	 of	 null	 and	 alternative	 hypotheses	 that	 should	 be
answered	during	the	analytic	lifecycle.

Table	3.5	Example	Null	Hypotheses	and	Alternative	Hypotheses

Application Null	Hypothesis Alternative	Hypothesis
Accuracy
Forecast

Model	X	does	not	predict	better
than	the	existing	model.

Model	X	predicts	better	than	the
existing	model.

Recommendation
Engine

Algorithm	Y	does	not	produce
better	recommendations	than	the
current	algorithm	being	used.

Algorithm	Y	produces	better
recommendations	than	the

current	algorithm	being	used.

Regression
Modeling

This	variable	does	not	affect	the
outcome	because	its	coefficient	is

zero.

This	variable	affects	outcome
because	its	coefficient	is	not

zero.

Once	a	model	is	built	over	the	training	data,	it	needs	to	be	evaluated	over	the	testing	data
to	see	if	the	proposed	model	predicts	better	than	the	existing	model	currently	being	used.
The	null	hypothesis	 is	 that	 the	proposed	model	does	not	predict	better	 than	 the	existing
model.	The	alternative	hypothesis	 is	 that	 the	proposed	model	 indeed	predicts	better	 than
the	existing	model.	In	accuracy	forecast,	the	null	model	could	be	that	the	sales	of	the	next
month	 are	 the	 same	 as	 the	 prior	 month.	 The	 hypothesis	 test	 needs	 to	 evaluate	 if	 the
proposed	 model	 provides	 a	 better	 prediction.	 Take	 a	 recommendation	 engine	 as	 an
example.	 The	 null	 hypothesis	 could	 be	 that	 the	 new	 algorithm	 does	 not	 produce	 better
recommendations	than	the	current	algorithm	being	deployed.	The	alternative	hypothesis	is
that	the	new	algorithm	produces	better	recommendations	than	the	old	algorithm.

When	evaluating	a	model,	sometimes	it	needs	to	be	determined	if	a	given	input	variable
improves	 the	model.	 In	regression	analysis	(Chapter	6),	 for	example,	 this	 is	 the	same	as
asking	 if	 the	 regression	coefficient	 for	a	variable	 is	zero.	The	null	hypothesis	 is	 that	 the
coefficient	is	zero,	which	means	the	variable	does	not	have	an	impact	on	the	outcome.	The
alternative	 hypothesis	 is	 that	 the	 coefficient	 is	 nonzero,	which	means	 the	 variable	 does
have	an	impact	on	the	outcome.

A	 common	 hypothesis	 test	 is	 to	 compare	 the	 means	 of	 two	 populations.	 Two	 such
hypothesis	tests	are	discussed	in	Section	3.3.2.

3.3.2	Difference	of	Means
Hypothesis	 testing	 is	a	common	approach	 to	draw	 inferences	on	whether	or	not	 the	 two
populations,	denoted	 	and	 ,	are	different	from	each	other.	This	section	provides	two
hypothesis	 tests	 to	 compare	 the	means	 of	 the	 respective	 populations	 based	 on	 samples
randomly	 drawn	 from	 each	 population.	 Specifically,	 the	 two	 hypothesis	 tests	 in	 this
section	consider	the	following	null	and	alternative	hypotheses.

	
:	
:	

The	 	and	 	denote	the	population	means	of	 	and	 ,	respectively.

The	 basic	 testing	 approach	 is	 to	 compare	 the	 observed	 sample	 means,	 	 and	 ,
corresponding	 to	 each	 population.	 If	 the	 values	 of	 	 and	 	 are	 approximately	 equal	 to
each	other,	 the	distributions	of	 	and	 	overlap	substantially	 (Figure	3.23),	and	 the	null
hypothesis	is	supported.	A	large	observed	difference	between	the	sample	means	indicates
that	the	null	hypothesis	should	be	rejected.	Formally,	the	difference	in	means	can	be	tested
using	Student’s	t-test	or	the	Welch’s	t-test.

Figure	3.23	Overlap	of	the	two	distributions	is	large	if	

Student’s	t-test

Student’s	t-test	assumes	that	distributions	of	the	two	populations	have	equal	but	unknown
variances.	Suppose	 	and	 	 samples	 are	 randomly	and	 independently	 selected	 from	 two
populations,	 	and	 ,	respectively.	If	each	population	is	normally	distributed	with	the
same	mean	()	and	with	the	same	variance,	then	T	(the	t-statistic),	given	in	Equation
3.1,	follows	a	t-distribution	with	 	degrees	of	freedom	(df).

Where

3.1	

The	shape	of	the	t-distribution	is	similar	to	the	normal	distribution.	In	fact,	as	the	degrees
of	 freedom	 approaches	 30	 or	 more,	 the	 t-distribution	 is	 nearly	 identical	 to	 the	 normal
distribution.	 Because	 the	 numerator	 of	 T	 is	 the	 difference	 of	 the	 sample	 means,	 if	 the
observed	value	of	T	is	far	enough	from	zero	such	that	the	probability	of	observing	such	a
value	of	T	is	unlikely,	one	would	reject	the	null	hypothesis	that	the	population	means	are
equal.	 Thus,	 for	 a	 small	 probability,	 say	 ,	 	 is	 determined	 such	 that	 .
After	 the	 samples	 are	 collected	 and	 the	 observed	 value	 of	T	 is	 calculated	 according	 to
Equation	3.1,	the	null	hypothesis	()	is	rejected	if	 .

In	 hypothesis	 testing,	 in	 general,	 the	 small	 probability,	 ,	 is	 known	 as	 the	 significance
level	of	 the	 test.	The	significance	 level	of	 the	 test	 is	 the	probability	of	 rejecting	 the	null
hypothesis,	when	 the	 null	 hypothesis	 is	 actually	TRUE.	 In	 other	words,	 for	 ,	 if	 the
means	 from	 the	 two	populations	 are	 truly	 equal,	 then	 in	 repeated	 random	sampling,	 the
observed	magnitude	of	 	would	only	exceed	 	5%	of	the	time.

In	 the	 following	 R	 code	 example,	 10	 observations	 are	 randomly	 selected	 from	 two
normally	 distributed	 populations	 and	 assigned	 to	 the	 variables	 x	 and	 y.	 The	 two
populations	have	a	mean	of	100	and	105,	respectively,	and	a	standard	deviation	equal	to	5.
Student’s	t-test	is	then	conducted	to	determine	if	the	obtained	random	samples	support	the
rejection	of	the	null	hypothesis.
#	generate	random	observations	from	the	two	populations

x	<-	rnorm(10,	mean=100,	sd=5)	#	normal	distribution	centered	at	100

y	<-	rnorm(20,	mean=105,	sd=5)	#	normal	distribution	centered	at	105

t.test(x,	y,	var.equal=TRUE)		#	run	the	Student’s	t-test

Two	Sample	t-test

data:	x	and	y

t	=	-1.7828,	df	=	28,	p-value	=	0.08547

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

-6.1611557	0.4271893

sample	estimates:

mean	of	x	mean	of	y	

102.2136	105.0806

From	the	R	output,	 the	observed	value	of	T	 is	 .	The	negative	sign	 is	due	 to	 the
fact	that	the	sample	mean	of	x	is	less	than	the	sample	mean	of	y.	Using	the	qt()	function
in	R,	a	T	value	of	2.0484	corresponds	to	a	0.05	significance	level.
#	obtain	t	value	for	a	two-sided	test	at	a	0.05	significance	level

qt(p=0.05/2,	df=28,	lower.tail=	FALSE)

2.048407

Because	the	magnitude	of	the	observed	T	statistic	is	less	than	the	T	value	corresponding	to
the	0.05	significance	level	(),	the	null	hypothesis	is	not	rejected.	Because	the
alternative	hypothesis	is	that	the	means	are	not	equal	(),	the	possibilities	of	both	
and	 	 need	 to	 be	 considered.	 This	 form	 of	 Student’s	 t-test	 is	 known	 as	 a	 two-sided
hypothesis	test,	and	it	is	necessary	for	the	sum	of	the	probabilities	under	both	tails	of	the	t-
distribution	 to	 equal	 the	 significance	 level.	 It	 is	 customary	 to	 evenly	 divide	 the
significance	level	between	both	tails.	So,	 	was	used	in	the	qt()	 function	 to
obtain	the	appropriate	t-value.

To	 simplify	 the	 comparison	 of	 the	 t-test	 results	 to	 the	 significance	 level,	 the	 R	 output
includes	 a	 quantity	 known	 as	 the	 p-value.	 In	 the	 preceding	 example,	 the	 p-value	 is
0.08547,	 which	 is	 the	 sum	 of	 	 and	 .	 Figure	 3.24	 illustrates	 the	 t-
statistic	for	the	area	under	the	tail	of	a	t-distribution.	The	-t	and	t	are	the	observed	values
of	 the	 t-statistic.	 In	 the	 R	 output,	 .	 The	 left	 shaded	 area	 corresponds	 to	 the	

,	and	the	right	shaded	area	corresponds	to	the	 .

Figure	3.24	Area	under	the	tails	(shaded)	of	a	student’s	t-distribution

In	the	R	output,	for	a	significance	level	of	0.05,	the	null	hypothesis	would	not	be	rejected
because	the	likelihood	of	a	T	value	of	magnitude	1.7828	or	greater	would	occur	at	higher
probability	than	0.05.	However,	based	on	the	p-value,	if	the	significance	level	was	chosen
to	be	0.10,	instead	of	0.05,	the	null	hypothesis	would	be	rejected.	In	general,	the	p-value
offers	the	probability	of	observing	such	a	sample	result	given	the	null	hypothesis	is	TRUE.

A	key	assumption	in	using	Student’s	t-test	is	that	the	population	variances	are	equal.	In	the
previous	 example,	 the	 t.test()	 function	 call	 includes	 var.equal=TRUE	 to	 specify	 that
equality	of	 the	variances	 should	be	 assumed.	 If	 that	 assumption	 is	not	 appropriate,	 then
Welch’s	t-test	should	be	used.

Welch’s	t-test

When	the	equal	population	variance	assumption	is	not	justified	in	performing	Student’s	t-
test	for	the	difference	of	means,	Welch’s	t-test	[14]	can	be	used	based	on	T	expressed	in
Equation	3.2.

3.2	

where	 ,	 ,	and	 	correspond	to	the	i-th	sample	mean,	sample	variance,	and	sample	size.
Notice	that	Welch’s	t-test	uses	the	sample	variance	()	for	each	population	instead	of	the
pooled	sample	variance.

In	Welch’s	 test,	 under	 the	 remaining	 assumptions	 of	 random	 samples	 from	 two	 normal
populations	 with	 the	 same	 mean,	 the	 distribution	 of	 T	 is	 approximated	 by	 the	 t-
distribution.	 The	 following	R	 code	 performs	 the	Welch’s	 t-test	 on	 the	 same	 set	 of	 data
analyzed	in	the	earlier	Student’s	t-test	example.
t.test(x,	y,	var.equal=FALSE)		#	run	the	Welch’s	t-test

Welch	Two	Sample	t-test

data:	x	and	y

t	=	-1.6596,	df	=	15.118,	p-value	=	0.1176

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

-6.546629	0.812663

sample	estimates:

mean	of	x	mean	of	y	

102.2136	105.0806

In	this	particular	example	of	using	Welch’s	t-test,	the	p-value	is	0.1176,	which	is	greater
than	the	p-value	of	0.08547	observed	in	the	Student’s	t-test	example.	In	this	case,	the	null
hypothesis	would	not	be	rejected	at	a	0.10	or	0.05	significance	level.

It	should	be	noted	that	the	degrees	of	freedom	calculation	is	not	as	straightforward	as	in
the	 Student’s	 t-test.	 In	 fact,	 the	 degrees	 of	 freedom	 calculation	 often	 results	 in	 a	 non-
integer	value,	as	in	this	example.	The	degrees	of	freedom	for	Welch’s	t-test	is	defined	in
Equation	3.3.

3.3	

In	both	the	Student’s	and	Welch’s	t-test	examples,	the	R	output	provides	95%	confidence
intervals	 on	 the	 difference	 of	 the	 means.	 In	 both	 examples,	 the	 confidence	 intervals
straddle	 zero.	 Regardless	 of	 the	 result	 of	 the	 hypothesis	 test,	 the	 confidence	 interval
provides	an	 interval	 estimate	of	 the	difference	of	 the	population	means,	not	 just	 a	point
estimate.

A	confidence	 interval	 is	 an	 interval	estimate	of	a	population	parameter	or	characteristic
based	on	sample	data.	A	confidence	interval	is	used	to	indicate	the	uncertainty	of	a	point
estimate.	If	 	is	the	estimate	of	some	unknown	population	mean	 ,	the	confidence	interval
provides	 an	 idea	 of	 how	 close	 	 is	 to	 the	 unknown	 .	 For	 example,	 a	 95%	 confidence
interval	 for	 a	population	mean	 straddles	 the	TRUE,	 but	 unknown	mean	95%	of	 the	 time.
Consider	Figure	3.25	as	an	example.	Assume	the	confidence	level	is	95%.	If	the	task	is	to
estimate	 the	mean	of	an	unknown	value	 	 in	a	normal	distribution	with	known	standard

deviation	 	and	the	estimate	based	on	 	observations	is	 ,	then	the	interval	 	straddles
the	unknown

Figure	3.25	A	95%	confidence	interval	straddling	the	unknown	population	mean	μ

value	of	 	with	about	a	95%	chance.	If	one	takes	100	different	samples	and	computes	the
95%	confidence	interval	for	the	mean,	95	of	the	100	confidence	intervals	will	be	expected
to	straddle	the	population	mean	 .

Confidence	 intervals	 appear	 again	 in	 Section	 3.3.6	 on	 ANOVA.	 Returning	 to	 the
discussion	of	hypothesis	testing,	a	key	assumption	in	both	the	Student’s	and	Welch’s	t-test
is	 that	 the	 relevant	 population	 attribute	 is	 normally	 distributed.	 For	 non-normally
distributed	data,	it	is	sometimes	possible	to	transform	the	collected	data	to	approximate	a
normal	 distribution.	 For	 example,	 taking	 the	 logarithm	of	 a	 dataset	 can	 often	 transform
skewed	 data	 to	 a	 dataset	 that	 is	 at	 least	 symmetric	 around	 its	 mean.	 However,	 if	 such

transformations	are	ineffective,	there	are	tests	like	the	Wilcoxon	rank-sum	test	that	can	be
applied	to	see	if	two	population	distributions	are	different.

3.3.3	Wilcoxon	Rank-Sum	Test
A	 t-test	 represents	 a	parametric	 test	 in	 that	 it	makes	 assumptions	 about	 the	 population
distributions	from	which	the	samples	are	drawn.	If	the	populations	cannot	be	assumed	or
transformed	 to	 follow	 a	 normal	 distribution,	 a	 nonparametric	 test	 can	 be	 used.	 The
Wilcoxon	rank-sum	test	[15]	is	a	nonparametric	hypothesis	test	that	checks	whether	two
populations	 are	 identically	 distributed.	 Assuming	 the	 two	 populations	 are	 identically
distributed,	 one	 would	 expect	 that	 the	 ordering	 of	 any	 sampled	 observations	 would	 be
evenly	 intermixed	 among	 themselves.	 For	 example,	 in	 ordering	 the	 observations,	 one
would	 not	 expect	 to	 see	 a	 large	 number	 of	 observations	 from	 one	 population	 grouped
together,	especially	at	the	beginning	or	the	end	of	ordering.

Let	 the	two	populations	again	be	pop1	and	pop2,	with	independently	random	samples	of
size	 	and	 	respectively.	The	total	number	of	observations	is	then	 .	The	first	step
of	the	Wilcoxon	test	is	to	rank	the	set	of	observations	from	the	two	groups	as	if	they	came
from	one	large	group.	The	smallest	observation	receives	a	rank	of	1,	the	second	smallest
observation	receives	a	rank	of	2,	and	so	on	with	the	largest	observation	being	assigned	the
rank	of	N.	Ties	among	the	observations	receive	a	rank	equal	 to	 the	average	of	 the	ranks
they	 span.	 The	 test	 uses	 ranks	 instead	 of	 numerical	 outcomes	 to	 avoid	 specific
assumptions	about	the	shape	of	the	distribution.

After	 ranking	 all	 the	 observations,	 the	 assigned	 ranks	 are	 summed	 for	 at	 least	 one
population’s	 sample.	 If	 the	 distribution	 of	 pop1	 is	 shifted	 to	 the	 right	 of	 the	 other
distribution,	the	rank-sum	corresponding	to	pop1‘s	sample	should	be	larger	than	the	rank-
sum	 of	 pop2.	 The	Wilcoxon	 rank-sum	 test	 determines	 the	 significance	 of	 the	 observed
rank-sums.	 The	 following	 R	 code	 performs	 the	 test	 on	 the	 same	 dataset	 used	 for	 the
previous	t-test.
wilcox.test(x,	y,	conf.int	=	TRUE)

Wilcoxon	rank	sum	test

data:	x	and	y

W	=	55,	p-value	=	0.04903

alternative	hypothesis:	true	location	shift	is	not	equal	to	0

95	percent	confidence	interval:

-6.2596774	-0.1240618

sample	estimates:

difference	in	location	

-3.417658

The	wilcox.test()	function	ranks	the	observations,	determines	the	respective	rank-sums
corresponding	 to	 each	population’s	 sample,	 and	 then	determines	 the	 probability	 of	 such
rank-sums	of	 such	magnitude	being	observed	assuming	 that	 the	population	distributions
are	identical.	In	this	example,	the	probability	is	given	by	the	p-value	of	0.04903.	Thus,	the
null	 hypothesis	 would	 be	 rejected	 at	 a	 0.05	 significance	 level.	 The	 reader	 is	 cautioned
against	interpreting	that	one	hypothesis	test	is	clearly	better	than	another	test	based	solely
on	the	examples	given	in	this	section.

Because	the	Wilcoxon	test	does	not	assume	anything	about	the	population	distribution,	it
is	 generally	 considered	 more	 robust	 than	 the	 t-test.	 In	 other	 words,	 there	 are	 fewer

assumptions	to	violate.	However,	when	it	is	reasonable	to	assume	that	the	data	is	normally
distributed,	Student’s	or	Welch’s	t-test	is	an	appropriate	hypothesis	test	to	consider.

3.3.4	Type	I	and	Type	II	Errors
A	hypothesis	test	may	result	in	two	types	of	errors,	depending	on	whether	the	test	accepts
or	rejects	the	null	hypothesis.	These	two	errors	are	known	as	type	I	and	type	II	errors.

	
A	type	I	error	is	the	rejection	of	the	null	hypothesis	when	the	null	hypothesis	is
TRUE.	The	probability	of	the	type	I	error	is	denoted	by	the	Greek	letter	 .
A	type	II	error	is	the	acceptance	of	a	null	hypothesis	when	the	null	hypothesis	is
FALSE.	The	probability	of	the	type	II	error	is	denoted	by	the	Greek	letter	 .

Table	 3.6	 lists	 the	 four	 possible	 states	 of	 a	 hypothesis	 test,	 including	 the	 two	 types	 of
errors.

Table	3.6	Type	I	and	Type	II	Error

H0	is	true H0	is	false

H0	is	accepted Correct	outcome Type	II	Error
H0	is	rejected Type	I	error Correct	outcome

The	significance	level,	as	mentioned	in	the	Student’s	t-test	discussion,	is	equivalent	to	the
type	I	error.	For	a	significance	level	such	as	 ,	if	the	null	hypothesis	()	is	TRUE,
there	 is	 a	 5%	 chance	 that	 the	 observed	T	 value	 based	 on	 the	 sample	 data	will	 be	 large
enough	 to	 reject	 the	 null	 hypothesis.	By	 selecting	 an	 appropriate	 significance	 level,	 the
probability	 of	 committing	 a	 type	 I	 error	 can	 be	 defined	 before	 any	 data	 is	 collected	 or
analyzed.

The	probability	of	committing	a	Type	II	error	is	somewhat	more	difficult	to	determine.	If
two	population	means	are	truly	not	equal,	the	probability	of	committing	a	type	II	error	will
depend	on	how	far	apart	the	means	truly	are.	To	reduce	the	probability	of	a	type	II	error	to
a	reasonable	level,	it	is	often	necessary	to	increase	the	sample	size.	This	topic	is	addressed
in	the	next	section.

3.3.5	Power	and	Sample	Size
The	 power	 of	 a	 test	 is	 the	 probability	 of	 correctly	 rejecting	 the	 null	 hypothesis.	 It	 is
denoted	by	 ,	where	 	is	the	probability	of	a	type	II	error.	Because	the	power	of	a	test
improves	as	 the	sample	size	 increases,	power	 is	used	 to	determine	 the	necessary	sample
size.	 In	 the	 difference	 of	 means,	 the	 power	 of	 a	 hypothesis	 test	 depends	 on	 the	 true
difference	of	the	population	means.	In	other	words,	for	a	fixed	significance	level,	a	larger
sample	 size	 is	 required	 to	 detect	 a	 smaller	 difference	 in	 the	 means.	 In	 general,	 the
magnitude	of	the	difference	is	known	as	the	effect	size.	As	the	sample	size	becomes	larger,
it	is	easier	to	detect	a	given	effect	size,	 ,	as	illustrated	in	Figure	3.26.

Figure	3.26	A	larger	sample	size	better	identifies	a	fixed	effect	size

With	a	large	enough	sample	size,	almost	any	effect	size	can	appear	statistically	significant.
However,	a	very	small	effect	 size	may	be	useless	 in	a	practical	 sense.	 It	 is	 important	 to
consider	an	appropriate	effect	size	for	the	problem	at	hand.

3.3.6	ANOVA
The	 hypothesis	 tests	 presented	 in	 the	 previous	 sections	 are	 good	 for	 analyzing	 means
between	two	populations.	But	what	 if	 there	are	more	than	two	populations?	Consider	an
example	of	testing	the	impact	of	nutrition	and	exercise	on	60	candidates	between	age	18
and	50.	The	candidates	are	randomly	split	into	six	groups,	each	assigned	with	a	different
weight	loss	strategy,	and	the	goal	is	to	determine	which	strategy	is	the	most	effective.

	
Group	1	only	eats	junk	food.
Group	2	only	eats	healthy	food.
Group	3	eats	junk	food	and	does	cardio	exercise	every	other	day.
Group	4	eats	healthy	food	and	does	cardio	exercise	every	other	day.
Group	5	eats	junk	food	and	does	both	cardio	and	strength	training	every	other	day.
Group	6	eats	healthy	food	and	does	both	cardio	and	strength	training	every	other	day.

Multiple	t-tests	could	be	applied	to	each	pair	of	weight	loss	strategies.	In	this	example,	the
weight	 loss	 of	 Group	 1	 is	 compared	 with	 the	 weight	 loss	 of	 Group	 2,	 3,	 4,	 5,	 or	 6.
Similarly,	 the	 weight	 loss	 of	 Group	 2	 is	 compared	 with	 that	 of	 the	 next	 4	 groups.
Therefore,	a	total	of	15	t-tests	would	be	performed.

However,	multiple	 t-tests	may	not	perform	well	 on	 several	 populations	 for	 two	 reasons.
First,	because	the	number	of	t-tests	increases	as	the	number	of	groups	increases,	analysis
using	the	multiple	 t-tests	becomes	cognitively	more	difficult.	Second,	by	doing	a	greater
number	of	analyses,	the	probability	of	committing	at	least	one	type	I	error	somewhere	in
the	analysis	greatly	increases.

Analysis	 of	 Variance	 (ANOVA)	 is	 designed	 to	 address	 these	 issues.	 ANOVA	 is	 a

generalization	 of	 the	 hypothesis	 testing	 of	 the	 difference	 of	 two	 population	 means.
ANOVA	tests	if	any	of	the	population	means	differ	from	the	other	population	means.	The
null	 hypothesis	 of	 ANOVA	 is	 that	 all	 the	 population	 means	 are	 equal.	 The	 alternative
hypothesis	is	that	at	least	one	pair	of	the	population	means	is	not	equal.	In	other	words,

	
:	
:	 	for	at	least	one	pair	of	i,	j

As	 seen	 in	 Section	 3.3.2,	 “Difference	 of	 Means,”	 each	 population	 is	 assumed	 to	 be
normally	distributed	with	the	same	variance.

The	first	 thing	to	calculate	for	 the	ANOVA	is	 the	test	statistic.	Essentially,	 the	goal	 is	 to
test	 whether	 the	 clusters	 formed	 by	 each	 population	 are	more	 tightly	 grouped	 than	 the
spread	across	all	the	populations.

Let	the	total	number	of	populations	be	 .	The	total	number	of	samples	 	is	randomly	split
into	the	 	groups.	The	number	of	samples	in	the	 	-th	group	is	denoted	as	 ,	and	the	mean
of	the	group	is	 	where	 .	The	mean	of	all	the	samples	is	denoted	as	 .

The	 between-groups	 mean	 sum	 of	 squares,	 ,	 is	 an	 estimate	 of	 the	 between-groups
variance.	It	measures	how	the	population	means	vary	with	respect	to	the	grand	mean,	or
the	 mean	 spread	 across	 all	 the	 populations.	 Formally,	 this	 is	 presented	 as	 shown	 in
Equation	3.4.

3.4	

The	within-group	mean	sum	of	squares,	 ,	is	an	estimate	of	the	within-group	variance.
It	quantifies	 the	spread	of	values	within	groups.	Formally,	 this	 is	presented	as	 shown	 in
Equation	3.5.

3.5	

If	 	 is	much	 larger	 than	 ,	 then	 some	of	 the	 population	means	 are	 different	 from	 each
other.

The	F-test	statistic	is	defined	as	the	ratio	of	the	between-groups	mean	sum	of	squares	and
the	within-group	mean	sum	of	squares.	Formally,	this	is	presented	as	shown	in	Equation
3.6.

3.6	

The	F-test	statistic	in	ANOVA	can	be	thought	of	as	a	measure	of	how	different	the	means
are	relative	to	the	variability	within	each	group.	The	larger	the	observed	F-test	statistic,	the
greater	the	likelihood	that	the	differences	between	the	means	are	due	to	something	other
than	 chance	 alone.	 The	F-test	 statistic	 is	 used	 to	 test	 the	 hypothesis	 that	 the	 observed
effects	 are	 not	 due	 to	 chance—that	 is,	 if	 the	means	 are	 significantly	 different	 from	one
another.

Consider	 an	 example	 that	 every	 customer	 who	 visits	 a	 retail	 website	 gets	 one	 of	 two
promotional	 offers	 or	 gets	 no	 promotion	 at	 all.	 The	 goal	 is	 to	 see	 if	 making	 the
promotional	offers	makes	a	difference.	ANOVA	could	be	used,	and	the	null	hypothesis	is
that	 neither	 promotion	makes	 a	 difference.	The	 code	 that	 follows	 randomly	 generates	 a
total	of	500	observations	of	purchase	sizes	on	three	different	offer	options.
offers	<-	sample(c(“offer1”,	“offer2”,	“nopromo”),	size=500,	replace=T)

#	Simulated	500	observations	of	purchase	sizes	on	the	3	offer	options

purchasesize	<-	ifelse(offers==“offer1”,	rnorm(500,	mean=80,	sd=30),

				ifelse(offers==“offer2”,	rnorm(500,	mean=85,	sd=30),

						rnorm(500,	mean=40,	sd=30)))

#	create	a	data	frame	of	offer	option	and	purchase	size

offertest	<-	data.frame(offer=as.factor(offers),

						purchase_amt=purchasesize)

The	summary	of	the	offertest	data	frame	shows	that	170	offer1,	161	offer2,	and	169
nopromo	(no	promotion)	offers	have	been	made.	It	also	shows	the	range	of	purchase	size
(purchase_amt)	for	each	of	the	three	offer	options.
bla	#	display	a	summary	of	offertest	where	offer=“offer1”

summary(offertest[offertest$offer==“offer1”,])

		offer		purchase_amt	

nopromo:	0	Min.	:	4.521	

offer1	:170	1st	Qu.:	58.158	

offer2	:	0	Median	:	76.944	

				Mean	:	81.936	

				3rd	Qu.:104.959	

				Max.	:180.507	

bla	#	display	a	summary	of	offertest	where	offer=“offer2”

summary(offertest[offertest$offer==“offer2”,])

		offer		purchase_amt	

nopromo:	0	Min.	:	14.04	

offer1	:	0	1st	Qu.:	69.46	

offer2	:161	Median	:	90.20	

				Mean	:	89.09	

				3rd	Qu.:107.48	

				Max.	:154.33	

bla	#	display	a	summary	of	offertest	where	offer=“nopromo”

summary(offertest[offertest$offer==“nopromo”,])

		offer		purchase_amt	

nopromo:169	Min.	:-27.00	

offer1	:	0	1st	Qu.:	20.22	

offer2	:	0	Median	:	42.44	

				Mean	:	40.97	

				3rd	Qu.:	58.96	

				Max.	:164.04

The	aov()	function	performs	the	ANOVA	on	purchase	size	and	offer	options.
bla	#	fit	ANOVA	test

model	<-	aov(purchase_amt	˜	offers,	data=offertest)

The	 summary()	 function	 shows	 a	 summary	 of	 the	 model.	 The	 degrees	 of	 freedom	 for
offers	is	2,	which	corresponds	to	the	 	in	the	denominator	of	Equation	3.4.	The	degrees
of	 freedom	 for	 residuals	 is	 497,	 which	 corresponds	 to	 the	 	 in	 the	 denominator	 of
Equation	3.5.

summary(model)

				Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)	

offers		2	225222	112611	130.6	<2e-16	***

Residuals	497	428470		862					

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

The	output	also	includes	the	 	(112,611),	 	(862),	the	F-test	statistic	(130.6),	and	the	p-
value	(<	2e–16).	The	F-test	statistic	is	much	greater	than	1	with	a	p-value	much	less	than
1.	Thus,	the	null	hypothesis	that	the	means	are	equal	should	be	rejected.

However,	 the	 result	 does	 not	 show	 whether	 offer1	 is	 different	 from	 offer2,	 which
requires	additional	tests.	The	TukeyHSD()	function	implements	Tukey’s	Honest	Significant
Difference	(HSD)	on	all	pair-wise	tests	for	difference	of	means.
TukeyHSD(model)

Tukey	multiple	comparisons	of	means

95%	family-wise	confidence	level

Fit:	aov(formula	=	purchase_amt	˜	offers,	data	=	offertest)

$offers

					diff		lwr		upr		p	adj

offer1-nopromo	40.961437	33.4638483	48.45903	0.0000000

offer2-nopromo	48.120286	40.5189446	55.72163	0.0000000

offer2-offer1	7.158849	-0.4315769	14.74928	0.0692895

The	result	 includes	p-values	of	pair-wise	comparisons	of	 the	 three	offer	options.	The	p-
values	 for	 offer1-nopromo	 and	 offer-nopromo	 are	 equal	 to	 0,	 smaller	 than	 the
significance	 level	 0.05.	 This	 suggests	 that	 both	 offer1	 and	 offer2	 are	 significantly
different	from	nopromo.	A	p-value	of	0.0692895	for	offer2	against	offer1	is	greater	than
the	 significance	 level	 0.05.	This	 suggests	 that	offer2	 is	not	 significantly	 different	 from
offer1.

Because	only	the	influence	of	one	factor	(offers)	was	executed,	the	presented	ANOVA	is
known	as	one-way	ANOVA.	If	the	goal	is	to	analyze	two	factors,	such	as	offers	and	day	of
week,	 that	 would	 be	 a	 two-way	 ANOVA	 [16].	 If	 the	 goal	 is	 to	 model	 more	 than	 one
outcome	variable,	then	multivariate	ANOVA	(or	MANOVA)	could	be	used.

Summary
R	 is	 a	 popular	 package	 and	 programming	 language	 for	 data	 exploration,	 analytics,	 and
visualization.	As	an	 introduction	 to	R,	 this	chapter	covers	 the	R	GUI,	data	I/O,	attribute
and	 data	 types,	 and	 descriptive	 statistics.	 This	 chapter	 also	 discusses	 how	 to	 use	 R	 to
perform	exploratory	data	analysis,	 including	 the	discovery	of	dirty	data,	visualization	of
one	or	more	variables,	and	customization	of	visualization	for	different	audiences.	Finally,
the	 chapter	 introduces	 some	 basic	 statistical	 methods.	 The	 first	 statistical	 method
presented	 in	 the	chapter	 is	 the	hypothesis	 testing.	The	Student’s	 t-test	and	Welch’s	 t-test
are	included	as	two	example	hypothesis	tests	designed	for	testing	the	difference	of	means.
Other	statistical	methods	and	tools	presented	in	this	chapter	include	confidence	intervals,
Wilcoxon	rank-sum	test,	type	I	and	II	errors,	effect	size,	and	ANOVA.

Exercises
	
1.	 How	many	levels	does	fdata	contain	in	the	following	R	code?

data	=	c(1,2,2,3,1,2,3,3,1,2,3,3,1)

fdata	=	factor(data)

2.	 Two	vectors,	v1	and	v2,	are	created	with	the	following	R	code:

v1	<-	1:5

v2	<-	6:2

What	are	the	results	of	cbind(v1,v2)	and	rbind(v1,v2)?
3.	 What	R	command(s)	would	you	use	to	remove	null	values	from	a	dataset?
4.	 What	R	command	can	be	used	to	install	an	additional	R	package?
5.	 What	R	function	is	used	to	encode	a	vector	as	a	category?
6.	 What	is	a	rug	plot	used	for	in	a	density	plot?
7.	 An	online	retailer	wants	to	study	the	purchase	behaviors	of	its	customers.	Figure	3.27

shows	the	density	plot	of	the	purchase	sizes	(in	dollars).	What	would	be	your
recommendation	to	enhance	the	plot	to	detect	more	structures	that	otherwise	might	be
missed?

Figure	3.27	Density	plot	of	purchase	size

8.	 How	many	sections	does	a	box-and-whisker	divide	the	data	into?	What	are	these
sections?

9.	 What	attributes	are	correlated	according	to	Figure	3.18?	How	would	you	describe
their	relationships?

10.	 What	function	can	be	used	to	fit	a	nonlinear	line	to	the	data?
11.	 If	a	graph	of	data	is	skewed	and	all	the	data	is	positive,	what	mathematical	technique

may	be	used	to	help	detect	structures	that	might	otherwise	be	overlooked?
12.	 What	is	a	type	I	error?	What	is	a	type	II	error?	Is	one	always	more	serious	than	the

other?	Why?
13.	 Suppose	everyone	who	visits	a	retail	website	gets	one	promotional	offer	or	no

promotion	at	all.	We	want	to	see	if	making	a	promotional	offer	makes	a	difference.
What	statistical	method	would	you	recommend	for	this	analysis?

14.	 You	are	analyzing	two	normally	distributed	populations,	and	your	null	hypothesis	is
that	the	mean	 	of	the	first	population	is	equal	to	the	mean	 	of	the	second.	Assume
the	significance	level	is	set	at	0.05.	If	the	observed	p-value	is	4.33e-05,	what	will	be
your	decision	regarding	the	null	hypothesis?

Bibliography
	
1.	 [1]	The	R	Project	for	Statistical	Computing,	“R	Licenses.”	[Online].	Available:

http://www.r-project.org/Licenses/.	[Accessed	10	December	2013].

2.	 [2]	The	R	Project	for	Statistical	Computing,	“The	Comprehensive	R	Archive
Network.”	[Online].	Available:	http://cran.r-project.org/.	[Accessed	10
December	2013].

3.	 [3]	J.	Fox	and	M.	Bouchet-Valat,	“The	R	Commander:	A	Basic-Statistics	GUI	for	R,”
CRAN.	[Online].	Available:	http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/.
[Accessed	11	December	2013].

4.	 [4]	G.	Williams,	M.	V.	Culp,	E.	Cox,	A.	Nolan,	D.	White,	D.	Medri,	and	A.	Waljee,
“Rattle:	Graphical	User	Interface	for	Data	Mining	in	R,”	CRAN.	[Online].	Available:
http://cran.r-project.org/web/packages/rattle/index.html.	[Accessed	12
December	2013].

5.	 [5]	RStudio,	“RStudio	IDE”	[Online].	Available:	http://www.rstudio.com/ide/.
[Accessed	11	December	2013].

6.	 [6]	R	Special	Interest	Group	on	Databases	(R-SIG-DB),	“DBI:	R	Database
Interface.”	CRAN	[Online].	Available:	http://cran.r-
project.org/web/packages/DBI/index.html.	[Accessed	13	December	2013].

7.	 [7]	B.	Ripley,	“RODBC:	ODBC	Database	Access,”	CRAN.	[Online].	Available:
http://cran.r-project.org/web/packages/RODBC/index.html.	[Accessed	13
December	2013].

8.	 [8]	S.	S.	Stevens,	“On	the	Theory	of	Scales	of	Measurement,”	Science,	vol.	103,	no.
2684,	p.	677–680,	1946.

9.	 [9]	D.	C.	Hoaglin,	F.	Mosteller,	and	J.	W.	Tukey,	Understanding	Robust	and
Exploratory	Data	Analysis,	New	York:	Wiley,	1983.

10.	 [10]	F.	J.	Anscombe,	“Graphs	in	Statistical	Analysis,”	The	American	Statistician,	vol.
27,	no.	1,	pp.	17–21,	1973.

11.	 [11]	H.	Wickham,	“ggplot2,”	2013.	[Online].	Available:	http://ggplot2.org/.
[Accessed	8	January	2014].

12.	 [12]	W.	S.	Cleveland,	Visualizing	Data,	Lafayette,	IN:	Hobart	Press,	1993.

13.	 [13]	R.	A.	Fisher,	“The	Use	of	Multiple	Measurements	in	Taxonomic	Problems,”
Annals	of	Eugenics,	vol.	7,	no.	2,	pp.	179–188,	1936.

14.	 [14]	B.	L.	Welch,	“The	Generalization	of	“Student’s”	Problem	When	Several
Different	Population	Variances	Are	Involved,”	Biometrika,	vol.	34,	no.	1–2,	pp.	28–
35,	1947.

15.	 [15]	F.	Wilcoxon,	“Individual	Comparisons	by	Ranking	Methods,”	Biometrics

http://www.r-project.org/Licenses/
http://cran.r-project.org/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://cran.r-project.org/web/packages/rattle/index.html
http://www.rstudio.com/ide/
http://cran.r-project.org/web/packages/DBI/index.html
http://cran.r-project.org/web/packages/RODBC/index.html
http://ggplot2.org/

Bulletin,	vol.	1,	no.	6,	pp.	80–83,	1945.

16.	 [16]	J.	J.	Faraway,	“Practical	Regression	and	Anova	Using	R,”	July	2002.	[Online].
Available:	http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf.
[Accessed	22	January	2014].

http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

Chapter	4
Advanced	Analytical	Theory	and	Methods:	Clustering

Key	Concepts
1.	 Centroid
2.	 Clustering
3.	 K-means
4.	 Unsupervised
5.	 Within	Sum	of	Squares

Building	 upon	 the	 introduction	 to	 R	 presented	 in	 Chapter	 3,	 “Review	 of	 Basic	 Data
Analytic	 Methods	 Using	 R,”	 Chapter	 4,	 “Advanced	 Analytical	 Theory	 and	 Methods:
Clustering”	 through	 Chapter	 9,	 “Advanced	 Analytical	 Theory	 and	 Methods:	 Text
Analysis”	describe	several	commonly	used	analytical	methods	that	may	be	considered	for
the	 Model	 Planning	 and	 Execution	 phases	 (Phases	 3	 and	 4)	 of	 the	 Data	 Analytics
Lifecycle.	This	chapter	considers	clustering	techniques	and	algorithms.

4.1	Overview	of	Clustering
In	general,	clustering	is	the	use	of	unsupervised	 techniques	for	grouping	similar	objects.
In	machine	learning,	unsupervised	refers	to	the	problem	of	finding	hidden	structure	within
unlabeled	data.	Clustering	techniques	are	unsupervised	in	the	sense	that	the	data	scientist
does	not	determine,	in	advance,	the	labels	to	apply	to	the	clusters.	The	structure	of	the	data
describes	 the	 objects	 of	 interest	 and	 determines	 how	 best	 to	 group	 the	 objects.	 For
example,	 based	 on	 customers’	 personal	 income,	 it	 is	 straightforward	 to	 divide	 the
customers	into	three	groups	depending	on	arbitrarily	selected	values.	The	customers	could
be	divided	into	three	groups	as	follows:

	
Earn	less	than	$10,000
Earn	between	$10,000	and	$99,999
Earn	$100,000	or	more

In	 this	 case,	 the	 income	 levels	 were	 chosen	 somewhat	 subjectively	 based	 on	 easy-to-
communicate	 points	 of	 delineation.	 However,	 such	 groupings	 do	 not	 indicate	 a	 natural
affinity	of	the	customers	within	each	group.	In	other	words,	there	is	no	inherent	reason	to
believe	 that	 the	customer	making	$90,000	will	behave	any	differently	 than	 the	customer
making	 $110,000.	 As	 additional	 dimensions	 are	 introduced	 by	 adding	 more	 variables
about	 the	 customers,	 the	 task	 of	 finding	meaningful	 groupings	 becomes	more	 complex.
For	 instance,	 suppose	 variables	 such	 as	 age,	 years	 of	 education,	 household	 size,	 and
annual	purchase	 expenditures	were	 considered	along	with	 the	personal	 income	variable.
What	are	the	natural	occurring	groupings	of	customers?	This	is	 the	type	of	question	that
clustering	analysis	can	help	answer.

Clustering	is	a	method	often	used	for	exploratory	analysis	of	the	data.	In	clustering,	there
are	no	predictions	made.	Rather,	clustering	methods	find	the	similarities	between	objects
according	 to	 the	 object	 attributes	 and	 group	 the	 similar	 objects	 into	 clusters.	Clustering
techniques	 are	 utilized	 in	 marketing,	 economics,	 and	 various	 branches	 of	 science.	 A
popular	clustering	method	is	k-means.

4.2	K-means
Given	 a	 collection	 of	 objects	 each	 with	 n	 measurable	 attributes,	 k-means	 [1]	 is	 an
analytical	technique	that,	for	a	chosen	value	of	k,	identifies	k	clusters	of	objects	based	on
the	 objects’	 proximity	 to	 the	 center	 of	 the	 k	 groups.	 The	 center	 is	 determined	 as	 the
arithmetic	 average	 (mean)	 of	 each	 cluster’s	 n-dimensional	 vector	 of	 attributes.	 This
section	describes	the	algorithm	to	determine	the	k	means	as	well	as	how	best	to	apply	this
technique	 to	 several	 use	 cases.	 Figure	 4.1	 illustrates	 three	 clusters	 of	 objects	 with	 two
attributes.	 Each	 object	 in	 the	 dataset	 is	 represented	 by	 a	 small	 dot	 color-coded	 to	 the
closest	large	dot,	the	mean	of	the	cluster.

Figure	4.1	Possible	k-means	clusters	for	k=3

4.2.1	Use	Cases
Clustering	 is	 often	 used	 as	 a	 lead-in	 to	 classification.	 Once	 the	 clusters	 are	 identified,
labels	 can	be	 applied	 to	 each	 cluster	 to	 classify	 each	group	based	on	 its	 characteristics.
Classification	 is	covered	 in	more	detail	 in	Chapter	7,	“Advanced	Analytical	Theory	and
Methods:	 Classification.”	 Clustering	 is	 primarily	 an	 exploratory	 technique	 to	 discover
hidden	structures	of	 the	data,	possibly	as	a	prelude	to	more	focused	analysis	or	decision
processes.	 Some	 specific	 applications	 of	 k-means	 are	 image	 processing,	 medical,	 and
customer	segmentation.

Image	Processing

Video	is	one	example	of	the	growing	volumes	of	unstructured	data	being	collected.	Within
each	frame	of	a	video,	k-means	analysis	can	be	used	to	identify	objects	in	the	video.	For
each	 frame,	 the	 task	 is	 to	 determine	 which	 pixels	 are	 most	 similar	 to	 each	 other.	 The
attributes	of	each	pixel	can	include	brightness,	color,	and	location,	the	x	and	y	coordinates
in	the	frame.	With	security	video	images,	for	example,	successive	frames	are	examined	to

identify	 any	 changes	 to	 the	 clusters.	 These	 newly	 identified	 clusters	 may	 indicate
unauthorized	access	to	a	facility.

Medical

Patient	 attributes	 such	 as	 age,	 height,	 weight,	 systolic	 and	 diastolic	 blood	 pressures,
cholesterol	 level,	 and	 other	 attributes	 can	 identify	 naturally	 occurring	 clusters.	 These
clusters	 could	 be	 used	 to	 target	 individuals	 for	 specific	 preventive	measures	 or	 clinical
trial	 participation.	 Clustering,	 in	 general,	 is	 useful	 in	 biology	 for	 the	 classification	 of
plants	and	animals	as	well	as	in	the	field	of	human	genetics.

Customer	Segmentation

Marketing	 and	 sales	 groups	 use	 k-means	 to	 better	 identify	 customers	who	 have	 similar
behaviors	 and	 spending	 patterns.	 For	 example,	 a	 wireless	 provider	 may	 look	 at	 the
following	 customer	 attributes:	 monthly	 bill,	 number	 of	 text	 messages,	 data	 volume
consumed,	 minutes	 used	 during	 various	 daily	 periods,	 and	 years	 as	 a	 customer.	 The
wireless	company	could	then	look	at	the	naturally	occurring	clusters	and	consider	tactics
to	increase	sales	or	reduce	the	customer	churn	rate,	the	proportion	of	customers	who	end
their	relationship	with	a	particular	company.

4.2.2	Overview	of	the	Method
To	illustrate	the	method	to	find	k	clusters	from	a	collection	of	M	objects	with	n	attributes,
the	two-dimensional	case	(n	=	2)	is	examined.	It	is	much	easier	to	visualize	the	k-means
method	in	two	dimensions.	Later	in	the	chapter,	the	two-dimension	scenario	is	generalized
to	handle	any	number	of	attributes.

Because	each	object	in	this	example	has	two	attributes,	it	is	useful	to	consider	each	object
corresponding	to	the	point	 ,	where	x	and	y	denote	the	two	attributes	and	i	=	1,	2	…	M.
For	a	given	cluster	of	m	points	(m	 	M),	the	point	that	corresponds	to	the	cluster’s	mean	is
called	 a	 centroid.	 In	 mathematics,	 a	 centroid	 refers	 to	 a	 point	 that	 corresponds	 to	 the
center	of	mass	for	an	object.

The	k-means	algorithm	to	find	k	clusters	can	be	described	in	the	following	four	steps.

	
1.	 Choose	the	value	of	k	and	the	k	initial	guesses	for	the	centroids.

In	this	example,	k	=	3,	and	the	initial	centroids	are	indicated	by	the	points
shaded	in	red,	green,	and	blue	in	Figure	4.2.

2.	 Compute	the	distance	from	each	data	point	 	to	each	centroid.	Assign	each	point
to	the	closest	centroid.	This	association	defines	the	first	k	clusters.

In	two	dimensions,	the	distance,	d,	between	any	two	points,	 	and	 ,
in	the	Cartesian	plane	is	typically	expressed	by	using	the	Euclidean
distance	measure	provided	in	Equation	4.1.

4.1	
In	Figure	4.3,	the	points	closest	to	a	centroid	are	shaded	the	corresponding
color.

3.	 Compute	the	centroid,	the	center	of	mass,	of	each	newly	defined	cluster	from	Step	2.
In	Figure	4.4,	the	computed	centroids	in	Step	3	are	the	lightly	shaded	points
of	the	corresponding	color.	In	two	dimensions,	the	centroid	()	of	the	m
points	in	a	k-means	cluster	is	calculated	as	follows	in	Equation	4.2.

4.2	
Thus,	 	is	the	ordered	pair	of	the	arithmetic	means	of	the	coordinates	of
the	m	points	in	the	cluster.	In	this	step,	a	centroid	is	computed	for	each	of
the	k	clusters.

4.	 Repeat	Steps	2	and	3	until	the	algorithm	converges	to	an	answer.
1.	 Assign	each	point	to	the	closest	centroid	computed	in	Step	3.
2.	 Compute	the	centroid	of	newly	defined	clusters.
3.	 Repeat	until	the	algorithm	reaches	the	final	answer.

Convergence	is	reached	when	the	computed	centroids	do	not	change	or	the
centroids	and	the	assigned	points	oscillate	back	and	forth	from	one	iteration
to	the	next.	The	latter	case	can	occur	when	there	are	one	or	more	points	that
are	equal	distances	from	the	computed	centroid.
To	generalize	the	prior	algorithm	to	n	dimensions,	suppose	there	are	M
objects,	where	each	object	is	described	by	n	attributes	or	property	values	

.	Then	object	i	is	described	by	 	for	i	=	1,2,…,	M.	In	other
words,	there	is	a	matrix	with	M	rows	corresponding	to	the	M	objects	and	n
columns	to	store	the	attribute	values.	To	expand	the	earlier	process	to	find
the	k	clusters	from	two	dimensions	to	n	dimensions,	the	following
equations	provide	the	formulas	for	calculating	the	distances	and	the
locations	of	the	centroids	for	n	≥	1.

For	a	given	point,	pi,	at	 	and	a	centroid,	q,	located	at	 ,	the
distance,	d,	between	pi	and	q,	is	expressed	as	shown	in	Equation	4.3.

4.3	

The	centroid,	q,	of	a	cluster	of	m	points,	 ,	is	calculated	as	shown
in	Equation	4.4.

4.4	

Figure	4.2	Initial	starting	points	for	the	centroids

Figure	4.3	Points	are	assigned	to	the	closest	centroid

Figure	4.4	Compute	the	mean	of	each	cluster

4.2.3	Determining	the	Number	of	Clusters
With	 the	 preceding	 algorithm,	 k	 clusters	 can	 be	 identified	 in	 a	 given	 dataset,	 but	 what
value	of	k	should	be	selected?	The	value	of	k	can	be	chosen	based	on	a	reasonable	guess
or	 some	 predefined	 requirement.	 However,	 even	 then,	 it	 would	 be	 good	 to	 know	 how
much	 better	 or	 worse	 having	 k	 clusters	 versus	 k	 –	 1	 or	 k	 +	 1	 clusters	 would	 be	 in
explaining	 the	 structure	 of	 the	 data.	Next,	 a	 heuristic	 using	 the	Within	 Sum	of	 Squares
(WSS)	 metric	 is	 examined	 to	 determine	 a	 reasonably	 optimal	 value	 of	 k.	 Using	 the
distance	function	given	in	Equation	4.3,	WSS	is	defined	as	shown	in	Equation	4.5.

4.5	

In	other	words,	WSS	is	 the	sum	of	 the	squares	of	 the	distances	between	each	data	point
and	the	closest	centroid.	The	term	 	indicates	the	closest	centroid	that	is	associated	with
the	ith	 point.	 If	 the	 points	 are	 relatively	 close	 to	 their	 respective	 centroids,	 the	WSS	 is
relatively	small.	Thus,	if	k	+	1	clusters	do	not	greatly	reduce	the	value	of	WSS	from	the
case	with	only	k	clusters,	there	may	be	little	benefit	to	adding	another	cluster.

Using	R	to	Perform	a	K-means	Analysis

To	illustrate	how	to	use	the	WSS	to	determine	an	appropriate	number,	k,	of	clusters,	 the
following	example	uses	R	to	perform	a	k-means	analysis.	The	task	 is	 to	group	620	high
school	 seniors	 based	 on	 their	 grades	 in	 three	 subject	 areas:	 English,	 mathematics,	 and
science.	The	grades	are	averaged	over	their	high	school	career	and	assume	values	from	0
to	100.	The	following	R	code	establishes	the	necessary	R	libraries	and	imports	 the	CSV
file	containing	the	grades.
library(plyr)

library(ggplot2)

library(cluster)

library(lattice)

library(graphics)

library(grid)

library(gridExtra)

#import	the	student	grades

grade_input	=	as.data.frame(read.csv(“c:/data/grades_km_input.csv”))

The	 following	 R	 code	 formats	 the	 grades	 for	 processing.	 The	 data	 file	 contains	 four
columns.	The	first	column	holds	a	student	identification	(ID)	number,	and	the	other	three
columns	are	for	the	grades	in	the	three	subject	areas.	Because	the	student	ID	is	not	used	in
the	clustering	analysis,	it	is	excluded	from	the	k-means	input	matrix,	kmdata.
kmdata_orig	=	as.matrix(grade_input[,c(“Student”,“English”,

“Math”,“Science”)])

kmdata	<-	kmdata_orig[,2:4]

kmdata[1:10,]

		English	Math	Science

[1,]		99	96		97

[2,]		99	96		97

[3,]		98	97		97

[4,]		95	100		95

[5,]		95	96		96

[6,]		96	97		96

[7,]		100	96		97

[8,]		95	98		98

[9,]		98	96		96

[10,]		99	99		95

To	determine	an	appropriate	value	for	k,	the	k-means	algorithm	is	used	to	identify	clusters
for	k	=	1,	2,	…,	15.	For	each	value	of	k,	 the	WSS	is	calculated.	 If	an	additional	cluster
provides	a	better	partitioning	of	the	data	points,	the	WSS	should	be	markedly	smaller	than
without	the	additional	cluster.

The	following	R	code	loops	through	several	k-means	analyses	for	the	number	of	centroids,
k,	 varying	 from	 1	 to	 15.	 For	 each	 k,	 the	 option	 nstart=25	 specifies	 that	 the	 k-means
algorithm	will	 be	 repeated	 25	 times,	 each	 starting	with	 k	 random	 initial	 centroids.	 The
corresponding	value	of	WSS	for	each	k-mean	analysis	is	stored	in	the	wss	vector.
wss	<-	numeric(15)

for	(k	in	1:15)	wss[k]	<-	sum(kmeans(kmdata,	centers=k,

nstart=25)$withinss)

Using	 the	 basic	R	 plot	 function,	 each	WSS	 is	 plotted	 against	 the	 respective	 number	 of
centroids,	1	through	15.	This	plot	is	provided	in	Figure	4.5.
plot(1:15,	wss,	type=“b”,	xlab=“Number	of	Clusters”,	ylab=“Within	Sum	of

Squares”)

Figure	4.5	WSS	of	the	student	grade	data

As	can	be	seen,	 the	WSS	is	greatly	reduced	when	k	increases	from	one	to	two.	Another
substantial	reduction	in	WSS	occurs	at	k	=	3.	However,	the	improvement	in	WSS	is	fairly
linear	for	k	>	3.	Therefore,	the	k-means	analysis	will	be	conducted	for	k	=	3.	The	process
of	identifying	the	appropriate	value	of	k	is	referred	to	as	finding	the	“elbow”	of	the	WSS
curve.
km	=	kmeans(kmdata,3,	nstart=25)

km

K-means	clustering	with	3	clusters	of	sizes	158,	218,	244

Cluster	means:

English		Math	Science

1	97.21519	93.37342	94.86076

2	73.22018	64.62844	65.84862

3	85.84426	79.68033	81.50820

Clustering	vector:

[1]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

		1	1	1	1	1	1	1	1	1	1

[41]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

		1	1	1	1	1	1	1	1	1	1

[81]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

		1	1	1	1	1	1	1	1	1	1

[121]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

		3	3	3	3	3	3	3	3	3	3

[161]	3	3	3	3	3	3	1	3	3	3	3	3	3	3	3	3	3	1	1	3	3	1	3	3	3	1	3	3	3	3

		3	3	1	3	3	3	3	3	3	3

[201]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

		3	3	3	3	3	3	3	3	3	3

[241]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

		3	3	3	3	3	3	3	3	3	3

[281]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

		3	3	3	3	3	3	3	3	3	3

[321]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

		3	3	3	3	3	3	3	3	3	3

[361]	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2	3	2	3	2	3	3	3

		2	2	2	2	3	3	2	2	2	2

[401]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

		2	2	2	2	2	2	2	2	2	2

[441]	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	3

		2	2	2	2	2	2	2	2	3	2

[481]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

		2	2	2	2	2	2	2	2	2	2

[521]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

		2	2	2	2	2	2	2	2	2	2

[561]	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

		2	2	2	2	2	2	2	2	2	2

[601]	3	3	2	2	3	3	3	3	1	1	3	3	3	2	2	3	2	3	3	3

Within	cluster	sum	of	squares	by	cluster:

[1]	6692.589	34806.339	22984.131

(between_SS	/	total_SS	=	76.5	%)

Available	components:

[1]	“cluster”	“centers”	“totss”	“withinss”	“tot.withinss”

[6]	“betweenss”	“size”		“iter”		“ifault”

The	displayed	contents	of	the	variable	km	include	the	following:

	
The	location	of	the	cluster	means
A	clustering	vector	that	defines	the	membership	of	each	student	to	a	corresponding
cluster	1,	2,	or	3
The	WSS	of	each	cluster
A	list	of	all	the	available	k-means	components

The	reader	can	find	details	on	these	components	and	using	k-means	in	R	by	employing	the
help	facility.

The	reader	may	have	wondered	whether	the	k-means	results	stored	in	km	are	equivalent	to
the	WSS	results	obtained	earlier	in	generating	the	plot	in	Figure	4.5.	The	following	check
verifies	that	the	results	are	indeed	equivalent.
c(wss[3]	,	sum(km$withinss))

[1]	64483.06	64483.06

In	 determining	 the	 value	 of	 k,	 the	 data	 scientist	 should	 visualize	 the	 data	 and	 assigned
clusters.	 In	 the	 following	 code,	 the	 ggplot2	 package	 is	 used	 to	 visualize	 the	 identified
student	clusters	and	centroids.
#prepare	the	student	data	and	clustering	results	for	plotting

df	=	as.data.frame(kmdata_orig[,2:4])

df$cluster	=	factor(km$cluster)

centers=as.data.frame(km$centers)

g1=	ggplot(data=df,	aes(x=English,	y=Math,	color=cluster))	+

geom_point()	+	theme(legend.position=“right”)	+

geom_point(data=centers,

				aes(x=English,y=Math,	color=as.factor(c(1,2,3))),

				size=10,	alpha=.3,	show_guide=FALSE)

g2	=ggplot(data=df,	aes(x=English,	y=Science,	color=cluster))	+

geom_point()	+

geom_point(data=centers,

				aes(x=English,y=Science,	color=as.factor(c(1,2,3))),

				size=10,	alpha=.3,	show_guide=FALSE)

g3	=	ggplot(data=df,	aes(x=Math,	y=Science,	color=cluster))	+

geom_point()	+

geom_point(data=centers,

				aes(x=Math,y=Science,	color=as.factor(c(1,2,3))),

				size=10,	alpha=.3,	show_guide=FALSE)

tmp	=	ggplot_gtable(ggplot_build(g1))

grid.arrange(arrangeGrob(g1	+	theme(legend.position=“none”),

							g2	+	theme(legend.position=“none”),

							g3	+	theme(legend.position=“none”),

							main	=“High	School	Student	Cluster	Analysis”,

							ncol=1))

The	resulting	plots	are	provided	in	Figure	4.6.	The	large	circles	represent	the	location	of
the	 cluster	 means	 provided	 earlier	 in	 the	 display	 of	 the	 km	 contents.	 The	 small	 dots
represent	 the	 students	 corresponding	 to	 the	 appropriate	 cluster	 by	 assigned	 color:	 red,
blue,	or	green.	In	general,	the	plots	indicate	the	three	clusters	of	students:	the	top	academic
students	(red),	the	academically	challenged	students	(green),	and	the	other	students	(blue)
who	 fall	 somewhere	between	 those	 two	groups.	The	plots	also	highlight	which	 students
may	excel	in	one	or	two	subject	areas	but	struggle	in	other	areas.

Figure	4.6	Plots	of	the	identified	student	clusters

Assigning	 labels	 to	 the	 identified	 clusters	 is	 useful	 to	 communicate	 the	 results	 of	 an
analysis.	In	a	marketing	context,	 it	 is	common	to	label	a	group	of	customers	as	frequent
shoppers	 or	 big	 spenders.	 Such	 designations	 are	 especially	 useful	when	 communicating
the	clustering	results	to	business	users	or	executives.	It	is	better	to	describe	the	marketing
plan	for	big	spenders	rather	than	Cluster	#1.

4.2.4	Diagnostics
The	heuristic	using	WSS	can	provide	at	least	several	possible	k	values	to	consider.	When
the	 number	 of	 attributes	 is	 relatively	 small,	 a	 common	 approach	 to	 further	 refine	 the
choice	of	k	 is	 to	plot	 the	data	 to	determine	how	distinct	 the	 identified	clusters	are	 from
each	other.	In	general,	the	following	questions	should	be	considered.

	
Are	the	clusters	well	separated	from	each	other?
Do	any	of	the	clusters	have	only	a	few	points?
Do	any	of	the	centroids	appear	to	be	too	close	to	each	other?

In	the	first	case,	ideally	the	plot	would	look	like	the	one	shown	in	Figure	4.7,	when	n	=	2.
The	clusters	are	well	defined,	with	considerable	space	between	the	four	identified	clusters.
However,	in	other	cases,	such	as	Figure	4.8,	the	clusters	may	be	close	to	each	other,	and
the	distinction	may	not	be	so	obvious.

Figure	4.7	Example	of	distinct	clusters

Figure	4.8	Example	of	less	obvious	clusters

In	such	cases,	it	is	important	to	apply	some	judgment	on	whether	anything	different	will
result	 by	 using	more	 clusters.	 For	 example,	 Figure	4.9	 uses	 six	 clusters	 to	 describe	 the
same	dataset	as	used	in	Figure	4.8.	If	using	more	clusters	does	not	better	distinguish	the
groups,	it	is	almost	certainly	better	to	go	with	fewer	clusters.

Figure	4.9	Six	clusters	applied	to	the	points	from	Figure	4.8

4.2.5	Reasons	to	Choose	and	Cautions
K-means	is	a	simple	and	straightforward	method	for	defining	clusters.	Once	clusters	and
their	associated	centroids	are	identified,	it	is	easy	to	assign	new	objects	(for	example,	new
customers)	 to	a	cluster	based	on	the	object’s	distance	from	the	closest	centroid.	Because
the	 method	 is	 unsupervised,	 using	 k-means	 helps	 to	 eliminate	 subjectivity	 from	 the

analysis.

Although	k-means	is	considered	an	unsupervised	method,	there	are	still	several	decisions
that	the	practitioner	must	make:

	
What	object	attributes	should	be	included	in	the	analysis?
What	unit	of	measure	(for	example,	miles	or	kilometers)	should	be	used	for	each
attribute?
Do	the	attributes	need	to	be	rescaled	so	that	one	attribute	does	not	have	a
disproportionate	effect	on	the	results?
What	other	considerations	might	apply?

Object	Attributes

Regarding	which	object	attributes	(for	example,	age	and	income)	to	use	in	the	analysis,	it
is	important	to	understand	what	attributes	will	be	known	at	the	time	a	new	object	will	be
assigned	 to	 a	 cluster.	 For	 example,	 information	 on	 existing	 customers’	 satisfaction	 or
purchase	 frequency	 may	 be	 available,	 but	 such	 information	 may	 not	 be	 available	 for
potential	customers.

The	Data	Scientist	may	have	a	choice	of	a	dozen	or	more	attributes	to	use	in	the	clustering
analysis.	Whenever	 possible	 and	 based	 on	 the	 data,	 it	 is	 best	 to	 reduce	 the	 number	 of
attributes	to	the	extent	possible.	Too	many	attributes	can	minimize	the	impact	of	the	most
important	 variables.	 Also,	 the	 use	 of	 several	 similar	 attributes	 can	 place	 too	 much
importance	 on	 one	 type	 of	 attribute.	 For	 example,	 if	 five	 attributes	 related	 to	 personal
wealth	 are	 included	 in	 a	 clustering	 analysis,	 the	wealth	 attributes	 dominate	 the	 analysis
and	possibly	mask	the	importance	of	other	attributes,	such	as	age.

When	dealing	with	the	problem	of	too	many	attributes,	one	useful	approach	is	to	identify
any	highly	correlated	attributes	and	use	only	one	or	two	of	the	correlated	attributes	in	the
clustering	 analysis.	 As	 illustrated	 in	 Figure	 4.10,	 a	 scatterplot	 matrix,	 as	 introduced	 in
Chapter	3,	is	a	useful	tool	to	visualize	the	pair-wise	relationships	between	the	attributes.

Figure	4.10	Scatterplot	matrix	for	seven	attributes

The	strongest	relationship	is	observed	to	be	between	Attribute3	and	Attribute7.	 If	 the
value	 of	 one	 of	 these	 two	 attributes	 is	 known,	 it	 appears	 that	 the	 value	 of	 the	 other
attribute	is	known	with	near	certainty.	Other	linear	relationships	are	also	identified	in	the
plot.	 For	 example,	 consider	 the	 plot	 of	Attribute2	 against	Attribute3.	 If	 the	 value	 of
Attribute2	is	known,	there	is	still	a	wide	range	of	possible	values	for	Attribute3.	Thus,
greater	 consideration	 must	 be	 given	 prior	 to	 dropping	 one	 of	 these	 attributes	 from	 the
clustering	analysis.

Another	option	to	reduce	the	number	of	attributes	is	to	combine	several	attributes	into	one
measure.	For	example,	instead	of	using	two	attribute	variables,	one	for	Debt	and	one	for
Assets,	a	Debt	to	Asset	ratio	could	be	used.	This	option	also	addresses	the	problem	when
the	magnitude	of	an	attribute	is	not	of	real	 interest,	but	 the	relative	magnitude	is	a	more
important	measure.

Units	of	Measure

From	a	computational	perspective,	 the	k-means	algorithm	is	somewhat	 indifferent	 to	 the

units	of	measure	for	a	given	attribute	(for	example,	meters	or	centimeters	for	a	patient’s
height).	However,	the	algorithm	will	identify	different	clusters	depending	on	the	choice	of
the	units	of	measure.	For	example,	suppose	that	k-means	is	used	to	cluster	patients	based
on	age	in	years	and	height	in	centimeters.	For	k=2,	Figure	4.11	illustrates	the	two	clusters
that	would	be	determined	for	a	given	dataset.

Figure	4.11	Clusters	with	height	expressed	in	centimeters

But	if	the	height	was	rescaled	from	centimeters	to	meters	by	dividing	by	100,	the	resulting
clusters	would	be	slightly	different,	as	illustrated	in	Figure	4.12.

Figure	4.12	Clusters	with	height	expressed	in	meters

When	the	height	is	expressed	in	meters,	the	magnitude	of	the	ages	dominates	the	distance
calculation	between	two	points.	The	height	attribute	provides	only	as	much	as	the	square
between	the	difference	of	the	maximum	height	and	the	minimum	height	or	 	to	the
radicand,	 the	 number	 under	 the	 square	 root	 symbol	 in	 the	 distance	 formula	 given	 in
Equation	4.3.	Age	can	contribute	as	much	as	 	to	the	radicand	when	measuring

the	distance.

Rescaling

Attributes	that	are	expressed	in	dollars	are	common	in	clustering	analyses	and	can	differ	in
magnitude	 from	 the	 other	 attributes.	 For	 example,	 if	 personal	 income	 is	 expressed	 in
dollars	and	age	is	expressed	in	years,	the	income	attribute,	often	exceeding	$10,000,	can
easily	dominate	the	distance	calculation	with	ages	typically	less	than	100	years.

Although	 some	 adjustments	 could	 be	 made	 by	 expressing	 the	 income	 in	 thousands	 of
dollars	 (for	 example,	 10	 for	 $10,000),	 a	more	 straightforward	method	 is	 to	 divide	 each
attribute	 by	 the	 attribute’s	 standard	 deviation.	 The	 resulting	 attributes	 will	 each	 have	 a
standard	deviation	equal	 to	1	and	will	be	without	units.	Returning	 to	 the	age	and	height
example,	the	standard	deviations	are	23.1	years	and	36.4	cm,	respectively.	Dividing	each
attribute	value	by	the	appropriate	standard	deviation	and	performing	the	k-means	analysis
yields	the	result	shown	in	Figure	4.13.

Figure	4.13	Clusters	with	rescaled	attributes

With	 the	rescaled	attributes	for	age	and	height,	 the	borders	of	 the	resulting	clusters	now
fall	 somewhere	 between	 the	 two	 earlier	 clustering	 analyses.	 Such	 an	 occurrence	 is	 not
surprising	based	on	 the	magnitudes	of	 the	attributes	of	 the	previous	clustering	attempts.
Some	practitioners	also	subtract	the	means	of	the	attributes	to	center	the	attributes	around
zero.	However,	this	step	is	unnecessary	because	the	distance	formula	is	only	sensitive	to
the	scale	of	the	attribute,	not	its	location.

In	many	 statistical	 analyses,	 it	 is	 common	 to	 transform	 typically	 skewed	 data,	 such	 as
income,	with	long	tails	by	taking	the	logarithm	of	the	data.	Such	transformation	can	also
be	 appied	 in	 k-means,	 but	 the	 Data	 Scientist	 needs	 to	 be	 aware	 of	 what	 effect	 this
transformation	will	have.	For	example,	if	 	of	 income	expressed	in	dollars	is	used,	 the
practitioner	is	essentially	stating	that,	from	a	clustering	perspective,	$1,000	is	as	close	to
$10,000	as	$10,000	is	 to	$100,000	 .	 In	many
cases,	the	skewness	of	the	data	may	be	the	reason	to	perform	the	clustering	analysis	in	the
first	place.

Additional	Considerations

The	k-means	algorithm	is	sensitive	to	the	starting	positions	of	the	initial	centroid.	Thus,	it
is	 important	 to	 rerun	 the	 k-means	 analysis	 several	 times	 for	 a	 particular	 value	 of	 k	 to
ensure	the	cluster	results	provide	the	overall	minimum	WSS.	As	seen	earlier,	this	task	is
accomplished	in	R	by	using	the	nstart	option	in	the	kmeans()	function	call.

This	chapter	presented	 the	use	of	 the	Euclidean	distance	function	 to	assign	 the	points	 to
the	closest	centroids.	Other	possible	function	choices	include	the	cosine	similarity	and	the
Manhattan	distance	functions.	The	cosine	similarity	function	 is	often	chosen	to	compare
two	documents	based	on	the	frequency	of	each	word	that	appears	in	each	of	the	documents
[2].	 For	 two	 points,	 p	 and	 q,	 at	 	 and	 ,	 respectively,	 the	 Manhattan
distance,	d1,	between	p	and	q	is	expressed	as	shown	in	Equation	4.6.

4.6	

The	Manhattan	distance	function	is	analogous	to	the	distance	traveled	by	a	car	 in	a	city,
where	 the	 streets	 are	 laid	 out	 in	 a	 rectangular	 grid	 (such	 as	 city	 blocks).	 In	 Euclidean
distance,	the	measurement	is	made	in	a	straight	line.	Using	Equation	4.6,	the	distance	from
(1,	1)	to	(4,	5)	would	be	|1	–	4|	+	|1	–	5|	=	7.	From	an	optimization	perspective,	if	there	is	a
need	to	use	the	Manhattan	distance	for	a	clustering	analysis,	the	median	is	a	better	choice
for	the	centroid	than	use	of	the	mean	[2].

K-means	 clustering	 is	 applicable	 to	 objects	 that	 can	 be	 described	 by	 attributes	 that	 are
numerical	 with	 a	 meaningful	 distance	 measure.	 From	 Chapter	 3,	 interval	 and	 ratio
attribute	 types	 can	 certainly	 be	 used.	 However,	 k-means	 does	 not	 handle	 categorical
variables	well.	For	example,	suppose	a	clustering	analysis	is	to	be	conducted	on	new	car
sales.	Among	 other	 attributes,	 such	 as	 the	 sale	 price,	 the	 color	 of	 the	 car	 is	 considered
important.	 Although	 one	 could	 assign	 numerical	 values	 to	 the	 color,	 such	 as	 red	 =	 1,
yellow	=	2,	 and	green	=	3,	 it	 is	 not	 useful	 to	 consider	 that	 yellow	 is	 as	 close	 to	 red	 as
yellow	is	to	green	from	a	clustering	perspective.	In	such	cases,	it	may	be	necessary	to	use
an	alternative	clustering	methodology.	Such	methods	are	described	in	the	next	section.

4.3	Additional	Algorithms
The	 k-means	 clustering	method	 is	 easily	 applied	 to	 numeric	 data	where	 the	 concept	 of
distance	 can	 naturally	 be	 applied.	However,	 it	may	 be	 necessary	 or	 desirable	 to	 use	 an
alternative	clustering	algorithm.	As	discussed	at	the	end	of	the	previous	section,	k-means
does	not	handle	categorical	data.	In	such	cases,	k-modes	[3]	is	a	commonly	used	method
for	 clustering	 categorical	 data	 based	 on	 the	 number	 of	 differences	 in	 the	 respective
components	of	the	attributes.	For	example,	if	each	object	has	four	attributes,	the	distance
from	(a,	b,	e,	d)	to	(d,	d,	d,	d)	is	3.	In	R,	the	function	kmode()	is	implemented	in	the	klaR
package.

Because	 k-means	 and	 k-modes	 divide	 the	 entire	 dataset	 into	 distinct	 groups,	 both
approaches	are	considered	partitioning	methods.	A	third	partitioning	method	is	known	as
Partitioning	around	Medoids	(PAM)	[4].	In	general,	a	medoid	is	a	representative	object	in
a	set	of	objects.	In	clustering,	the	medoids	are	the	objects	in	each	cluster	that	minimize	the
sum	of	the	distances	from	the	medoid	to	the	other	objects	in	the	cluster.	The	advantage	of
using	PAM	is	 that	 the	“center”	of	each	cluster	 is	an	actual	object	 in	 the	dataset.	PAM	is
implemented	in	R	by	the	pam()	 function	included	in	the	cluster	R	package.	The	fpc	R
package	 includes	 a	 function	pamk(),	which	 uses	 the	pam()	 function	 to	 find	 the	 optimal
value	for	k.

Other	 clustering	 methods	 include	 hierarchical	 agglomerative	 clustering	 and	 density
clustering	methods.	In	hierarchical	agglomerative	clustering,	each	object	is	initially	placed
in	 its	 own	 cluster.	 The	 clusters	 are	 then	 combined	 with	 the	 most	 similar	 cluster.	 This
process	 is	 repeated	until	one	cluster,	which	 includes	all	 the	objects,	exists.	The	R	stats
package	 includes	 the	 hclust()	 function	 for	 performing	 hierarchical	 agglomerative
clustering.	 In	 density-based	 clustering	 methods,	 the	 clusters	 are	 identified	 by	 the
concentration	 of	 points.	 The	 fpc	 R	 package	 includes	 a	 function,	 dbscan(),	 to	 perform
density-based	 clustering	 analysis.	 Density-based	 clustering	 can	 be	 useful	 to	 identify
irregularly	shaped	clusters.

Summary
Clustering	 analysis	 groups	 similar	 objects	 based	 on	 the	 objects’	 attributes.	Clustering	 is
applied	 in	 areas	 such	 as	 marketing,	 economics,	 biology,	 and	 medicine.	 This	 chapter
presented	a	detailed	explanation	of	the	k-means	algorithm	and	its	implementation	in	R.	To
use	k-means	properly,	it	is	important	to	do	the	following:

	
Properly	scale	the	attribute	values	to	prevent	certain	attributes	from	dominating	the
other	attributes.
Ensure	that	the	concept	of	distance	between	the	assigned	values	within	an	attribute	is
meaningful.
Choose	the	number	of	clusters,	k,	such	that	the	sum	of	the	Within	Sum	of	Squares
(WSS)	of	the	distances	is	reasonably	minimized.	A	plot	such	as	the	example	in	Figure
4.5	can	be	helpful	in	this	respect.

If	k-means	does	not	appear	to	be	an	appropriate	clustering	technique	for	a	given	dataset,
then	alternative	techniques	such	as	k-modes	or	PAM	should	be	considered.

Once	the	clusters	are	identified,	it	is	often	useful	to	label	these	clusters	in	some	descriptive
way.	Especially	when	 dealing	with	 upper	management,	 these	 labels	 are	 useful	 to	 easily
communicate	 the	 findings	 of	 the	 clustering	 analysis.	 In	 clustering,	 the	 labels	 are	 not
preassigned	 to	 each	 object.	 The	 labels	 are	 subjectively	 assigned	 after	 the	 clusters	 have
been	 identified.	 Chapter	 7	 considers	 several	 methods	 to	 perform	 the	 classification	 of
objects	with	predetermined	labels.	Clustering	can	be	used	with	other	analytical	techniques,
such	 as	 regression.	 Linear	 regression	 and	 logistic	 regression	 are	 covered	 in	 Chapter	 6,
“Advanced	Analytical	Theory	and	Methods:	Regression.”

Exercises
	
1.	 Using	the	age	and	height	clustering	example	in	section	4.2.5,	algebraically	illustrate

the	impact	on	the	measured	distance	when	the	height	is	expressed	in	meters	rather
than	centimeters.	Explain	why	different	clusters	will	result	depending	on	the	choice
of	units	for	the	patient’s	height.

2.	 Compare	and	contrast	five	clustering	algorithms,	assigned	by	the	instructor	or
selected	by	the	student.

3.	 Using	the	ruspini	dataset	provided	with	the	cluster	package	in	R,	perform	a	k-
means	analysis.	Document	the	findings	and	justify	the	choice	of	k.	Hint:	use
data(ruspini)	to	load	the	dataset	into	the	R	workspace.

Bibliography
	
1.	 [1]	J.	MacQueen,	“Some	Methods	for	Classification	and	Analysis	of	Multivariate

Observations,”	in	Proceedings	of	the	Fifth	Berkeley	Symposium	on	Mathematical
Statistics	and	Probability,	Berkeley,	CA,	1967.

2.	 [2]	P.-N.	Tan,	V.	Kumar,	and	M.	Steinbach,	Introduction	to	Data	Mining,	Upper
Saddle	River,	NJ:	Person,	2013.

3.	 [3]	Z.	Huang,	“A	Fast	Clustering	Algorithm	to	Cluster	Very	Large	Categorical	Data
Sets	in	Data	Mining,”	1997.	[Online].	Available:
http://citeseerx.ist.psu.edu/viewdoc/	download?
doi=10.1.1.134.83&rep=rep1&type=pdf.	[Accessed	13	March	2014].

4.	 [4]	L.	Kaufman	and	P.	J.	Rousseeuw,	“Partitioning	Around	Medoids	(Program
PAM),”	in	Finding	Groups	in	Data:	An	Introduction	to	Cluster	Analysis,	Hoboken,
NJ,	John	Wiley	&	Sons,	Inc,	2008,	p.	68-125,	Chapter	2.

http://citeseerx.ist.psu.edu/viewdoc/

Chapter	5
Advanced	Analytical	Theory	and	Methods:	Association
Rules

Key	Concepts
1.	 Association	rules
2.	 Apriori	algorithm
3.	 Support
4.	 Confidence
5.	 Lift
6.	 Leverage

This	chapter	discusses	an	unsupervised	learning	method	called	association	rules.	This	is	a
descriptive,	not	predictive,	method	often	used	to	discover	interesting	relationships	hidden
in	 a	 large	 dataset.	 The	 disclosed	 relationships	 can	 be	 represented	 as	 rules	 or	 frequent
itemsets.	Association	rules	are	commonly	used	for	mining	transactions	in	databases.

Here	are	some	possible	questions	that	association	rules	can	answer:

	
Which	products	tend	to	be	purchased	together?
Of	those	customers	who	are	similar	to	this	person,	what	products	do	they	tend	to
buy?
Of	those	customers	who	have	purchased	this	product,	what	other	similar	products	do
they	tend	to	view	or	purchase?

5.1	Overview
Figure	5.1	 shows	 the	general	 logic	behind	 association	 rules.	Given	a	 large	 collection	of
transactions	(depicted	as	three	stacks	of	receipts	in	the	figure),	in	which	each	transaction
consists	of	one	or	more	items,	association	rules	go	through	the	items	being	purchased	to
see	what	items	are	frequently	bought	together	and	to	discover	a	list	of	rules	that	describe
the	 purchasing	 behavior.	 The	 goal	 with	 association	 rules	 is	 to	 discover	 interesting
relationships	among	the	items.	(The	relationship	occurs	too	frequently	to	be	random	and	is
meaningful	 from	 a	 business	 perspective,	 which	 may	 or	 may	 not	 be	 obvious.)	 The
relationships	that	are	interesting	depend	both	on	the	business	context	and	the	nature	of	the
algorithm	being	used	for	the	discovery.

Figure	5.1	The	general	logic	behind	association	rules

Each	of	the	uncovered	rules	is	in	the	form	X	→	Y,	meaning	that	when	item	X	is	observed,
item	Y	 is	 also	observed.	 In	 this	 case,	 the	 left-hand	 side	 (LHS)	of	 the	 rule	 is	X,	 and	 the
right-hand	side	(RHS)	of	the	rule	is	Y.

Using	association	rules,	patterns	can	be	discovered	from	the	data	that	allow	the	association
rule	 algorithms	 to	 disclose	 rules	 of	 related	 product	 purchases.	 The	 uncovered	 rules	 are
listed	 on	 the	 right	 side	 of	 Figure	 5.1.	 The	 first	 three	 rules	 suggest	 that	 when	 cereal	 is
purchased,	90%	of	the	time	milk	is	purchased	also.	When	bread	is	purchased,	40%	of	the
time	 milk	 is	 purchased	 also.	 When	 milk	 is	 purchased,	 23%	 of	 the	 time	 cereal	 is	 also
purchased.

In	the	example	of	a	retail	store,	association	rules	are	used	over	transactions	that	consist	of
one	or	more	 items.	 In	 fact,	because	of	 their	popularity	 in	mining	customer	 transactions,
association	 rules	 are	 sometimes	 referred	 to	 as	market	 basket	 analysis.	 Each	 transaction
can	be	viewed	as	the	shopping	basket	of	a	customer	that	contains	one	or	more	items.	This
is	also	known	as	an	itemset.	The	term	itemset	refers	to	a	collection	of	items	or	individual
entities	 that	 contain	 some	 kind	 of	 relationship.	 This	 could	 be	 a	 set	 of	 retail	 items
purchased	 together	 in	 one	 transaction,	 a	 set	 of	 hyperlinks	 clicked	 on	 by	 one	 user	 in	 a
single	session,	or	a	set	of	tasks	done	in	one	day.	An	itemset	containing	k	items	is	called	a

k-itemset.	This	chapter	uses	curly	braces	 like	{item	1,item	2,…	item	k}	 to	denote	a	k-
itemset.	Computation	of	the	association	rules	is	typically	based	on	itemsets.

The	research	of	association	rules	started	as	early	as	the	1960s.	Early	research	by	Hájek	et
al.	[1]	 introduced	many	of	the	key	concepts	and	approaches	of	association	rule	learning,
but	 it	 focused	 on	 the	 mathematical	 representation	 rather	 than	 the	 algorithm.	 The
framework	 of	 association	 rule	 learning	 was	 brought	 into	 the	 database	 community	 by
Agrawal	 et	 al.	 [2]	 in	 the	 early	 1990s	 for	 discovering	 regularities	 between	products	 in	 a
large	database	of	customer	transactions	recorded	by	point-of-sale	systems	in	supermarkets.
In	later	years,	it	expanded	to	web	contexts,	such	as	mining	path	traversal	patterns	[3]	and
usage	patterns	[4]	to	facilitate	organization	of	web	pages.

This	 chapter	 chooses	 Apriori	 as	 the	 main	 focus	 of	 the	 discussion	 of	 association	 rules.
Apriori	 [5]	 is	 one	 of	 the	 earliest	 and	 the	 most	 fundamental	 algorithms	 for	 generating
association	rules.	It	pioneered	the	use	of	support	for	pruning	the	itemsets	and	controlling
the	exponential	growth	of	candidate	itemsets.	Shorter	candidate	itemsets,	which	are	known
to	 be	 frequent	 itemsets,	 are	 combined	 and	 pruned	 to	 generate	 longer	 frequent	 itemsets.
This	 approach	eliminates	 the	need	 for	 all	 possible	 itemsets	 to	be	 enumerated	within	 the
algorithm,	since	the	number	of	all	possible	itemsets	can	become	exponentially	large.

One	major	component	of	Apriori	is	support.	Given	an	itemset	L,	the	support	[2]	of	L	is	the
percentage	of	transactions	that	contain	L.	For	example,	if	80%	of	all	transactions	contain
itemset	{bread},	 then	the	support	of	{bread}	 is	0.8.	Similarly,	if	60%	of	all	transactions
contain	itemset	{bread,butter},	then	the	support	of	{bread,butter}	is	0.6.

A	frequent	itemset	has	items	that	appear	together	often	enough.	The	term	“often	enough”
is	 formally	defined	with	a	minimum	support	 criterion.	 If	 the	minimum	support	 is	 set	 at
0.5,	any	 itemset	can	be	considered	a	 frequent	 itemset	 if	at	 least	50%	of	 the	 transactions
contain	 this	 itemset.	 In	other	words,	 the	 support	of	 a	 frequent	 itemset	 should	be	greater
than	 or	 equal	 to	 the	 minimum	 support.	 For	 the	 previous	 example,	 both	 {bread}	 and
{bread,butter}	 are	 considered	 frequent	 itemsets	 at	 the	 minimum	 support	 0.5.	 If	 the
minimum	support	is	0.7,	only	{bread}	is	considered	a	frequent	itemset.

If	an	itemset	is	considered	frequent,	then	any	subset	of	the	frequent	itemset	must	also	be
frequent.	This	is	referred	to	as	the	Apriori	property	(or	downward	closure	property).	For
example,	 if	 60%	 of	 the	 transactions	 contain	 {bread,jam},	 then	 at	 least	 60%	 of	 all	 the
transactions	 will	 contain	 {bread}	 or	 {jam}.	 In	 other	 words,	 when	 the	 support	 of
{bread,jam}	is	0.6,	the	support	of	{bread}	or	{jam}	is	at	least	0.6.	Figure	5.2	 illustrates
how	the	Apriori	property	works.	If	itemset	{B,C,D}	is	frequent,	then	all	the	subsets	of	this
itemset,	 shaded,	must	also	be	 frequent	 itemsets.	The	Apriori	property	provides	 the	basis
for	the	Apriori	algorithm.

Figure	5.2	Itemset	{A,B,C,D}	and	its	subsets

5.2	Apriori	Algorithm
The	Apriori	 algorithm	 takes	 a	 bottom-up	 iterative	 approach	 to	 uncovering	 the	 frequent
itemsets	by	 first	determining	all	 the	possible	 items	(or	1-itemsets,	 for	example	{bread},
{eggs},	{milk},	…)	and	then	identifying	which	among	them	are	frequent.

Assuming	the	minimum	support	threshold	(or	the	minimum	support	criterion)	is	set	at	0.5,
the	 algorithm	 identifies	 and	 retains	 those	 itemsets	 that	 appear	 in	 at	 least	 50%	 of	 all
transactions	and	discards	(or	“prunes	away”)	the	itemsets	that	have	a	support	less	than	0.5
or	appear	in	fewer	than	50%	of	the	transactions.	The	word	prune	is	used	like	it	would	be
in	gardening,	where	unwanted	branches	of	a	bush	are	clipped	away.

In	the	next	iteration	of	the	Apriori	algorithm,	the	identified	frequent	1-itemsets	are	paired
into	2-itemsets	(for	example,	{bread,eggs},	{bread,milk},	{eggs,milk},	…)	and	again
evaluated	to	identify	the	frequent	2-itemsets	among	them.

At	each	iteration,	the	algorithm	checks	whether	the	support	criterion	can	be	met;	if	it	can,
the	algorithm	grows	the	itemset,	repeating	the	process	until	it	runs	out	of	support	or	until
the	 itemsets	 reach	 a	 predefined	 length.	 The	 Apriori	 algorithm	 [5]	 is	 given	 next.	 Let
variable	 	be	 the	set	of	candidate	k-itemsets	and	variable	 	 be	 the	 set	 of	k-itemsets	 that
satisfy	 the	 minimum	 support.	 Given	 a	 transaction	 database	 ,	 a	 minimum	 support
threshold	 ,	and	an	optional	parameter	 	indicating	the	maximum	length	an	itemset	could
reach,	Apriori	iteratively	computes	frequent	itemsets	 	based	on	 .
1	Apriori	(,	 ,)

2	

3	 	{1-itemsets	that	satisfy	minimum	support	 }

4	while	

5		if	

6		 	←	candidate	itemsets	generated	from	

7		for	each	transaction	 	in	database	 	do

8			increment	the	counts	of	 	contained	in	

9		 	candidates	in	 	that	satisfy	minimum	support	

10		

11	return	

The	first	step	of	the	Apriori	algorithm	is	to	identify	the	frequent	itemsets	by	starting	with
each	 item	 in	 the	 transactions	 that	 meets	 the	 predefined	 minimum	 support	 threshold	 .
These	itemsets	are	1-itemsets	denoted	as	 ,	as	each	1-itemset	contains	only	one	item.	Next,
the	algorithm	grows	 the	 itemsets	by	 joining	 	onto	 itself	 to	 form	new,	grown	2-itemsets
denoted	as	 	and	determines	the	support	of	each	2-itemset	in	 .	Those	itemsets	that	do	not
meet	the	minimum	support	threshold	 	are	pruned	away.	The	growing	and	pruning	process
is	repeated	until	no	itemsets	meet	the	minimum	support	threshold.	Optionally,	a	threshold	
	 can	 be	 set	 up	 to	 specify	 the	maximum	 number	 of	 items	 the	 itemset	 can	 reach	 or	 the
maximum	number	of	 iterations	of	 the	 algorithm.	Once	completed,	output	of	 the	Apriori
algorithm	is	the	collection	of	all	the	frequent	k-itemsets.

Next,	a	collection	of	candidate	rules	is	formed	based	on	the	frequent	itemsets	uncovered	in
the	iterative	process	described	earlier.	For	example,	a	frequent	itemset	{milk,eggs}	may
suggest	candidate	rules	{milk}→{eggs}	and	{eggs}→{milk}.

5.3	Evaluation	of	Candidate	Rules
Frequent	itemsets	from	the	previous	section	can	form	candidate	rules	such	as	X	implies	Y
(X	→	Y).	This	section	discusses	how	measures	such	as	confidence,	lift,	and	leverage	can
help	evaluate	the	appropriateness	of	these	candidate	rules.

Confidence	 [2]	 is	defined	as	 the	measure	of	certainty	or	 trustworthiness	associated	with
each	 discovered	 rule.	 Mathematically,	 confidence	 is	 the	 percent	 of	 transactions	 that
contain	both	X	and	Y	out	of	all	the	transactions	that	contain	X	(see	Equation	5.1).

5.1	

For	example,	 if	{bread,eggs,milk}	has	a	support	of	0.15	and	{bread,eggs}	 also	has	 a
support	of	0.15,	the	confidence	of	rule	{bread,eggs}→{milk}	is	1,	which	means	100%	of
the	 time	 a	 customer	 buys	 bread	 and	 eggs,	milk	 is	 bought	 as	well.	The	 rule	 is	 therefore
correct	for	100%	of	the	transactions	containing	bread	and	eggs.

A	 relationship	 may	 be	 thought	 of	 as	 interesting	 when	 the	 algorithm	 identifies	 the
relationship	with	a	measure	of	confidence	greater	than	or	equal	to	a	predefined	threshold.
This	 predefined	 threshold	 is	 called	 the	 minimum	 confidence.	 A	 higher	 confidence
indicates	 that	 the	 rule	 (X	→	Y)	 is	 more	 interesting	 or	 more	 trustworthy,	 based	 on	 the
sample	dataset.

So	 far,	 this	 chapter	 has	 talked	 about	 two	 common	measures	 that	 the	Apriori	 algorithm
uses:	support	and	confidence.	All	the	rules	can	be	ranked	based	on	these	two	measures	to
filter	out	the	uninteresting	rules	and	retain	the	interesting	ones.

Even	though	confidence	can	 identify	 the	 interesting	rules	from	all	 the	candidate	rules,	 it
comes	with	a	problem.	Given	rules	in	the	form	of	X	→	Y,	confidence	considers	only	the
antecedent	(X)	and	the	co-occurrence	of	X	and	Y;	it	does	not	take	the	consequent	of	the
rule	(Y)	into	concern.	Therefore,	confidence	cannot	tell	if	a	rule	contains	true	implication
of	 the	 relationship	 or	 if	 the	 rule	 is	 purely	 coincidental.	 X	 and	 Y	 can	 be	 statistically
independent	yet	still	receive	a	high	confidence	score.	Other	measures	such	as	lift	[6]	and
leverage	[7]	are	designed	to	address	this	issue.

Lift	measures	how	many	times	more	often	X	and	Y	occur	together	than	expected	if	they
are	statistically	independent	of	each	other.	Lift	is	a	measure	[6]	of	how	X	and	Y	are	really
related	rather	than	coincidentally	happening	together	(see	Equation	5.2).

5.2	

Lift	is	1	if	X	and	Y	are	statistically	independent	of	each	other.	In	contrast,	a	lift	of	X	→	Y
greater	 than	 1	 indicates	 that	 there	 is	 some	 usefulness	 to	 the	 rule.	A	 larger	 value	 of	 lift
suggests	a	greater	strength	of	the	association	between	X	and	Y.

Assuming	 1,000	 transactions,	 with	 {milk,eggs}	 appearing	 in	 300	 of	 them,	 {milk}
appearing	 in	 500,	 and	 {eggs}	 appearing	 in	 400,	 then	 .	 If
{bread}	 appears	 in	 400	 transactions	 and	 {milk,bread}	 appears	 in	 400,	 then	

.	 Therefore	 it	 can	 be	 concluded	 that	 milk	 and	 bread	 have	 a
stronger	association	than	milk	and	eggs.

Leverage	[7]	is	a	similar	notion,	but	instead	of	using	a	ratio,	leverage	uses	the	difference
(see	 Equation	 5.3).	 Leverage	 measures	 the	 difference	 in	 the	 probability	 of	 X	 and	 Y
appearing	 together	 in	 the	dataset	compared	 to	what	would	be	expected	 if	X	and	Y	were
statistically	independent	of	each	other.

5.3	

In	theory,	leverage	is	0	when	X	and	Y	are	statistically	independent	of	each	other.	If	X	and
Y	 have	 some	 kind	 of	 relationship,	 the	 leverage	 would	 be	 greater	 than	 zero.	 A	 larger
leverage	 value	 indicates	 a	 stronger	 relationship	 between	 X	 and	 Y.	 For	 the	 previous
example,	 	and	 .	 It	again
confirms	that	milk	and	bread	have	a	stronger	association	than	milk	and	eggs.

Confidence	 is	 able	 to	 identify	 trustworthy	 rules,	 but	 it	 cannot	 tell	 whether	 a	 rule	 is
coincidental.	 A	 high-confidence	 rule	 can	 sometimes	 be	 misleading	 because	 confidence
does	not	consider	support	of	the	itemset	in	the	rule	consequent.	Measures	such	as	lift	and
leverage	not	only	ensure	interesting	rules	are	identified	but	also	filter	out	the	coincidental
rules.

This	 chapter	 has	 discussed	 four	 measures	 of	 significance	 and	 interestingness	 for
association	 rules:	 support,	 confidence,	 lift,	 and	 leverage.	 These	 measures	 ensure	 the
discovery	of	 interesting	and	strong	 rules	 from	sample	datasets.	Besides	 these	 four	 rules,
there	 are	 other	 alternative	 measures,	 such	 as	 correlation	 [8],	 collective	 strength	 [9],
conviction	[6],	and	coverage	[10].	Refer	to	the	Bibliography	to	learn	how	these	measures
work.

5.4	Applications	of	Association	Rules
The	term	market	basket	analysis	refers	to	a	specific	implementation	of	association	rules
mining	that	many	companies	use	for	a	variety	of	purposes,	including	these:

	
Broad-scale	approaches	to	better	merchandising—what	products	should	be	included
in	or	excluded	from	the	inventory	each	month
Cross-merchandising	between	products	and	high-margin	or	high-ticket	items
Physical	or	logical	placement	of	product	within	related	categories	of	products
Promotional	programs—multiple	product	purchase	incentives	managed	through	a
loyalty	card	program

Besides	market	 basket	 analysis,	 association	 rules	 are	 commonly	 used	 for	 recommender
systems	[11]	and	clickstream	analysis	[12].

Many	 online	 service	 providers	 such	 as	Amazon	 and	Netflix	 use	 recommender	 systems.
Recommender	 systems	can	use	association	 rules	 to	discover	 related	products	or	 identify
customers	 who	 have	 similar	 interests.	 For	 example,	 association	 rules	 may	 suggest	 that
those	 customers	 who	 have	 bought	 product	 A	 have	 also	 bought	 product	 B,	 or	 those
customers	who	have	bought	products	A,	B,	and	C	are	more	similar	to	this	customer.	These
findings	provide	opportunities	for	retailers	to	cross-sell	their	products.

Clickstream	 analysis	 refers	 to	 the	 analytics	 on	 data	 related	 to	 web	 browsing	 and	 user
clicks,	which	is	stored	on	the	client	or	 the	server	side.	Web	usage	log	files	generated	on
web	 servers	 contain	 huge	 amounts	 of	 information,	 and	 association	 rules	 can	 potentially
give	 useful	 knowledge	 to	web	 usage	 data	 analysts.	 For	 example,	 association	 rules	may
suggest	that	website	visitors	who	land	on	page	X	click	on	links	A,	B,	and	C	much	more
often	than	links	D,	E,	and	F.	This	observation	provides	valuable	insight	on	how	to	better
personalize	and	recommend	the	content	to	site	visitors.

The	next	section	shows	an	example	of	grocery	store	transactions	and	demonstrates	how	to
use	R	to	perform	association	rule	mining.

5.5	An	Example:	Transactions	in	a	Grocery	Store
An	example	illustrates	the	application	of	the	Apriori	algorithm	to	a	relatively	simple	case
that	 generalizes	 to	 those	 used	 in	 practice.	 Using	 R	 and	 the	 arules	 and	 arulesViz
packages,	 this	 example	 shows	 how	 to	 use	 the	 Apriori	 algorithm	 to	 generate	 frequent
itemsets	and	rules	and	to	evaluate	and	visualize	the	rules.

The	following	commands	 install	 these	 two	packages	and	 import	 them	into	 the	current	R
workspace:
install.packages(‘arules’)

install.packages(‘arulesViz’)

library(‘arules’)

library(‘arulesViz’)

5.5.1	The	Groceries	Dataset
The	 example	 uses	 the	 Groceries	 dataset	 from	 the	 R	 arules	 package.	 The	 Groceries
dataset	 is	 collected	 from	 30	 days	 of	 real-world	 point-of-sale	 transactions	 of	 a	 grocery
store.	 The	 dataset	 contains	 9,835	 transactions,	 and	 the	 items	 are	 aggregated	 into	 169
categories.
data(Groceries)

Groceries

transactions	in	sparse	format	with

9835	transactions	(rows)	and

169	items	(columns)

The	 summary	 shows	 that	 the	 most	 frequent	 items	 in	 the	 dataset	 include	 items	 such	 as
whole	 milk,	 other	 vegetables,	 rolls/buns,	 soda,	 and	 yogurt.	 These	 items	 are	 purchased
more	often	than	the	others.
summary(Groceries)

transactions	as	itemMatrix	in	sparse	format	with

9835	rows	(elements/itemsets/transactions)	and

169	columns	(items)	and	a	density	of	0.02609146

most	frequent	items:

		whole	milk	other	vegetables		rolls/buns				soda

			2513				1903				1809				1715

			yogurt			(Other)

			1372			34055

element	(itemset/transaction)	length	distribution:

sizes

1	2	3	4	5	6	7	8	9	10	11	12	13	14

2159	1643	1299	1005	855	645	545	438	350	246	182	117	78	77

15	16	17	18	19	20	21	22	23	24	26	27	28	29

55	46	29	14	14	9	11	4	6	1	1	1	1	3

32

1

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.

1.000	2.000	3.000	4.409	6.000	32.000

includes	extended	item	information	-	examples:

		labels	level2			level1

1	frankfurter	sausage	meet	and	sausage

2		sausage	sausage	meet	and	sausage

3	liver	loaf	sausage	meet	and	sausage

The	 class	 of	 the	 dataset	 is	 transactions,	 as	 defined	 by	 the	 arules	 package.	 The
transactions	class	contains	three	slots:

	
transactionInfo:	A	data	frame	with	vectors	of	the	same	length	as	the	number	of
transactions
itemInfo:	A	data	frame	to	store	item	labels
data:	A	binary	incidence	matrix	that	indicates	which	item	labels	appear	in	every
transaction

class(Groceries)

[1]	“transactions”

attr(,“package”)

[1]	“arules”

For	 the	 Groceries	 dataset,	 the	 transactionInfo	 is	 not	 being	 used.	 Enter
Groceries@itemInfo	 to	 display	 all	 169	 grocery	 labels	 as	 well	 as	 their	 categories.	 The
following	 command	 displays	 only	 the	 first	 20	 grocery	 labels.	 Each	 grocery	 label	 is
mapped	to	two	levels	of	categories—level2	and	level1—where	level1	 is	a	superset	of
level2.	For	example,	grocery	label	sausage	belongs	to	the	sausage	category	in	level2,
and	it	is	part	of	the	meat	and	sausage	category	in	level1.	(Note	that	“meet”	in	level1	is
a	typo	in	the	dataset.)
Groceries@itemInfo[1:20,]

				labels		level2				level1

1		frankfurter	sausage		meet	and	sausage

2			sausage	sausage		meet	and	sausage

3			liver	loaf	sausage		meet	and	sausage

4				ham	sausage		meet	and	sausage

5				meat	sausage		meet	and	sausage

6	finished	products	sausage		meet	and	sausage

7	organic	sausage	sausage		meet	and	sausage

8			chicken	poultry		meet	and	sausage

9				turkey	poultry		meet	and	sausage

10				pork		pork		meet	and	sausage

11				beef		beef		meet	and	sausage

12	hamburger	meat		beef		meet	and	sausage

13				fish		fish		meet	and	sausage

14		citrus	fruit		fruit	fruit	and	vegetables

15	tropical	fruit		fruit	fruit	and	vegetables

16			pip	fruit		fruit	fruit	and	vegetables

17			grapes		fruit	fruit	and	vegetables

18			berries		fruit	fruit	and	vegetables

19		nuts/prunes		fruit	fruit	and	vegetables

20	root	vegetables	vegetables	fruit	and	vegetables

The	following	code	displays	the	10th	to	20th	transactions	of	 the	Groceries	dataset.	The
[10:20]	can	be	changed	to	[1:9835]	to	display	all	the	transactions.
apply(Groceries@data[,10:20],	2,

		function(r)	paste(Groceries@itemInfo[r,“labels”],	collapse=”,	“)

)

Each	row	in	the	output	shows	a	transaction	that	includes	one	or	more	products,	and	each

transaction	corresponds	to	everything	in	a	customer’s	shopping	cart.	For	example,	 in	the
first	transaction,	a	customer	has	purchased	whole	milk	and	cereals.
[1]	“whole	milk,	cereals”

[2]	“tropical	fruit,	other	vegetables,	white	bread,	bottled	water,

chocolate”

[3]	“citrus	fruit,	tropical	fruit,	whole	milk,	butter,	curd,	yogurt,	flour,

bottled	water,	dishes”

[4]	“beef”

[5]	“frankfurter,	rolls/buns,	soda”

[6]	“chicken,	tropical	fruit”

[7]	“butter,	sugar,	fruit/vegetable	juice,	newspapers”

[8]	“fruit/vegetable	juice”

[9]	“packaged	fruit/vegetables”

[10]	“chocolate”

[11]	“specialty	bar”

The	next	section	shows	how	to	generate	frequent	itemsets	from	the	Groceries	dataset.

5.5.2	Frequent	Itemset	Generation
The	 apriori()	 function	 from	 the	 arule	 package	 implements	 the	 Apriori	 algorithm	 to
create	 frequent	 itemsets.	 Note	 that,	 by	 default,	 theapriori()	 function	 executes	 all	 the
iterations	 at	 once.	 However,	 to	 illustrate	 how	 the	 Apriori	 algorithm	 works,	 the	 code
examples	 in	 this	 section	 manually	 set	 the	 parameters	 of	 the	 apriori()	 function	 to
simulate	each	iteration	of	the	algorithm.

Assume	 that	 the	 minimum	 support	 threshold	 is	 set	 to	 0.02	 based	 on	 management
discretion.	Because	 the	 dataset	 contains	 9,853	 transactions,	 an	 itemset	 should	 appear	 at
least	 198	 times	 to	 be	 considered	 a	 frequent	 itemset.	 The	 first	 iteration	 of	 the	 Apriori
algorithm	computes	the	support	of	each	product	in	the	dataset	and	retains	those	products
that	 satisfy	 the	minimum	 support.	 The	 following	 code	 identifies	 59	 frequent	 1-itemsets
that	satisfy	the	minimum	support.	The	parameters	of	apriori()	specify	the	minimum	and
maximum	 lengths	 of	 the	 itemsets,	 the	 minimum	 support	 threshold,	 and	 the	 target
indicating	the	type	of	association	mined.
itemsets	<-	apriori(Groceries,	parameter=list(minlen=1,	maxlen=1,

						support=0.02,	target=“frequent	itemsets”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.8	0.1	1	none	FALSE			TRUE	0.02		1

maxlen			target	ext

		1	frequent	itemsets	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[59	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	done	[0.00s].

writing	…	[59	set(s)]	done	[0.00s].

creating	S4	object	…	done	[0.00s].

The	summary	of	the	itemsets	shows	that	the	support	of	1-itemsets	ranges	from	0.02105	to
0.25552.	Because	the	maximum	support	of	the	1-itemsets	in	the	dataset	is	only	0.25552,	to
enable	the	discovery	of	interesting	rules,	the	minimum	support	threshold	should	not	be	set
too	close	to	that	number.
summary(itemsets)

set	of	59	itemsets

most	frequent	items:

frankfurter		sausage			ham		meat		chicken

			1			1			1			1			1

(Other)

			54

element	(itemset/transaction)	length	distribution:sizes

1

59

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.

		1		1		1		1		1		1

summary	of	quality	measures:

support

Min.	:0.02105

1st	Qu.:0.03015

Median	:0.04809

Mean	:0.06200

3rd	Qu.:0.07666

Max.	:0.25552

includes	transaction	ID	lists:	FALSE

mining	info:

		data	ntransactions	support	confidence

Groceries			9835	0.02			1

The	following	code	uses	the	inspect()	function	to	display	the	top	10	frequent	1-itemsets
sorted	by	 their	 support.	Of	all	 the	 transaction	 records,	 the	59	1-itemsets	 such	as	{whole
milk},	 {other	 vegetables},	 {rolls/buns},	 {soda},	 and	 {yogurt}	 all	 satisfy	 the
minimum	support.	Therefore,	they	are	called	frequent	1-itemsets.
inspect(head(sort(itemsets,	by	=	“support”),	10))

items						support

1	{whole	milk}			0.25551601

2	{other	vegetables}		0.19349263

3	{rolls/buns}			0.18393493

4	{soda}					0.17437722

5	{yogurt}				0.13950178

6	{bottled	water}			0.11052364

7	{root	vegetables}		0.10899847

8	{tropical	fruit}		0.10493137

9	{shopping	bags}			0.09852567

10	{sausage}				0.09395018

In	the	next	iteration,	the	list	of	frequent	1-itemsets	is	joined	onto	itself	to	form	all	possible
candidate	2-itemsets.	For	example,	1-itemsets	{whole	milk}	and	{soda}	would	be	joined
to	become	a	2-itemset	{whole	milk,soda}.	The	algorithm	computes	the	support	of	each
candidate	 2-itemset	 and	 retains	 those	 that	 satisfy	 the	minimum	support.	The	output	 that
follows	shows	that	61	frequent	2-itemsets	have	been	identified.
itemsets	<-	apriori(Groceries,	parameter=list(minlen=2,	maxlen=2,

						support=0.02,	target=“frequent	itemsets”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.8	0.1	1	none	FALSE			TRUE	0.02		2

maxlen			target	ext

		2	frequent	itemsets	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[59	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	2	done	[0.00s].

writing	…	[61	set(s)]	done	[0.00s].

creating	S4	object	…	done	[0.00s].

The	summary	of	the	itemsets	shows	that	the	support	of	2-itemsets	ranges	from	0.02003	to
0.07483.
summary(itemsets)

set	of	61	itemsets

most	frequent	items:

		whole	milk	other	vegetables			yogurt		rolls/buns

				25				17				9				9

			soda			(Other)

				9				53

element	(itemset/transaction)	length	distribution:sizes

2

61

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.

		2		2		2		2		2		2

summary	of	quality	measures:

support

Min.	:0.02003

1st	Qu.:0.02227

Median	:0.02613

Mean	:0.02951

3rd	Qu.:0.03223

Max.	:0.07483

includes	transaction	ID	lists:	FALSE

mining	info:

		data	ntransactions	support	confidence

Groceries			9835	0.02			1

The	 top	10	most	 frequent	 2-itemsets	 are	 displayed	next,	 sorted	 by	 their	 support.	Notice
that	whole	milk	 appears	 six	 times	 in	 the	 top	 10	 2-itemsets	 ranked	 by	 support.	As	 seen
earlier,	{whole	milk}	has	 the	highest	support	among	all	 the	1-itemsets.	These	 top	10	2-
itemsets	with	the	highest	support	may	not	be	interesting;	this	highlights	the	limitations	of
using	support	alone.
inspect(head(sort(itemsets,	by	=“support”),10))

items					support

1	{other	vegetables,

whole	milk}		0.07483477

2	{whole	milk,

rolls/buns}		0.05663447

3	{whole	milk,

yogurt}			0.05602440

4	{root	vegetables,

whole	milk}		0.04890696

5	{root	vegetables,

other	vegetables}	0.04738180

6	{other	vegetables,

yogurt}			0.04341637

7	{other	vegetables,

rolls/buns}		0.04260295

8	{tropical	fruit,

whole	milk}		0.04229792

9	{whole	milk,

soda}				0.04006101

10	{rolls/buns,

soda}				0.03833249

Next,	the	list	of	frequent	2-itemsets	is	joined	onto	itself	to	form	candidate	3-itemsets.	For
example	 {other	 vegetables,whole	 milk}	 and	 {whole	 milk,rolls/buns}	 would	 be
joined	 as	 {other	 vegetables,whole	 milk,rolls/buns}.	 The	 algorithm	 retains	 those
itemsets	 that	 satisfy	 the	 minimum	 support.	 The	 following	 output	 shows	 that	 only	 two
frequent	3-itemsets	have	been	identified.
itemsets	<-	apriori(Groceries,	parameter=list(minlen=3,	maxlen=3,

						support=0.02,	target=“frequent	itemsets”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.8	0.1	1	none	FALSE			TRUE	0.02		3

maxlen			target	ext

		3	frequent	itemsets	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[59	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	2	3	done	[0.00s].

writing	…	[2	set(s)]	done	[0.00s].

creating	S4	object	…	done	[0.00s].

The	3-itemsets	are	displayed	next:
inspect(sort(itemsets,	by	=“support”))

items					support

1	{root	vegetables,

other	vegetables,

whole	milk}		0.02318251

2	{other	vegetables,

whole	milk,

yogurt}			0.02226741

In	 the	 next	 iteration,	 there	 is	 only	 one	 candidate	 4-itemset	 {root	 vegetables,other

vegetables,whole	milk,yogurt},	and	its	support	is	below	0.02.	No	frequent	4-itemsets
have	been	found,	and	the	algorithm	converges.
itemsets	<-	apriori(Groceries,	parameter=list(minlen=4,	maxlen=4,

						support=0.02,	target=“frequent	itemsets”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.8	0.1	1	none	FALSE			TRUE	0.02		4

maxlen			target	ext

		4	frequent	itemsets	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[59	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	2	3	done	[0.00s].

writing	…	[0	set(s)]	done	[0.00s].

creating	S4	object	…	done	[0.00s].

The	 previous	 steps	 simulate	 the	Apriori	 algorithm	 at	 each	 iteration.	 For	 the	 Groceries
dataset,	 the	 iterations	 run	 out	 of	 support	 when	 k	 =	 4.	 Therefore,	 the	 frequent	 itemsets
contain	59	frequent	1-itemsets,	61	frequent	2-itemsets,	and	2	frequent	3-itemsets.

When	the	maxlen	parameter	is	not	set,	the	algorithm	continues	each	iteration	until	it	runs
out	of	support	or	until	k	reaches	the	default	maxlen=10.	As	shown	in	the	code	output	that
follows,	122	frequent	itemsets	have	been	identified.	This	matches	the	total	number	of	59
frequent	1-itemsets,	61	frequent	2-itemsets,	and	2	frequent	3-itemsets.
itemsets	<-	apriori(Groceries,	parameter=list(minlen=1,	support=0.02,

											target=“frequent	itemsets”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.8	0.1	1	none	FALSE			TRUE	0.02		1

maxlen			target	ext

		10	frequent	itemsets	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[59	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	2	3	done	[0.00s].

writing	…	[122	set(s)]	done	[0.00s].

creating	S4	object	…	done	[0.00s].

Note	 that	 the	 results	 are	 assessed	based	on	 the	 specific	 business	 context	 of	 the	 exercise
using	the	specific	dataset.	If	the	dataset	changes	or	a	different	minimum	support	threshold
is	 chosen,	 the	 Apriori	 algorithm	 must	 run	 each	 iteration	 again	 to	 retrieve	 the	 updated
frequent	itemsets.

5.5.3	Rule	Generation	and	Visualization
The	apriori()	 function	 can	 also	 be	 used	 to	 generate	 rules.	Assume	 that	 the	minimum
support	 threshold	 is	 now	 set	 to	 a	 lower	 value	 0.001,	 and	 the	 minimum	 confidence
threshold	is	set	to	0.6.	A	lower	minimum	support	threshold	allows	more	rules	to	show	up.
The	following	code	creates	2,918	rules	from	all	the	transactions	in	the	Groceries	dataset
that	satisfy	both	the	minimum	support	and	the	minimum	confidence.
rules	<-	apriori(Groceries,	parameter=list(support=0.001,

						confidence=0.6,	target	=	“rules”))

parameter	specification:

confidence	minval	smax	arem	aval	originalSupport	support	minlen

		0.6	0.1	1	none	FALSE			TRUE	0.001		1

maxlen	target	ext

		10	rules	FALSE

algorithmic	control:

filter	tree	heap	memopt	load	sort	verbose

0.1	TRUE	TRUE	FALSE	TRUE	2	TRUE

apriori	-	find	association	rules	with	the	apriori	algorithm

version	4.21	(2004.05.09)		(c)	1996-2004	Christian	Borgelt

set	item	appearances	…[0	item(s)]	done	[0.00s].

set	transactions	…[169	item(s),	9835	transaction(s)]	done	[0.00s].

sorting	and	recoding	items	…	[157	item(s)]	done	[0.00s].

creating	transaction	tree	…	done	[0.00s].

checking	subsets	of	size	1	2	3	4	5	6	done	[0.01s].

writing	…	[2918	rule(s)]	done	[0.00s].

creating	S4	object	…	done	[0.01s].

The	 summary	 of	 the	 rules	 shows	 the	 number	 of	 rules	 and	 ranges	 of	 the	 support,
confidence,	and	lift.
summary(rules)

set	of	2918	rules

rule	length	distribution	(lhs	+	rhs):sizes

2	3	4	5	6

3	490	1765	626	34

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.

2.000	4.000	4.000	4.068	4.000	6.000

summary	of	quality	measures:

support			confidence			lift

Min.	:0.001017	Min.	:0.6000	Min.	:	2.348

1st	Qu.:0.001118	1st	Qu.:0.6316	1st	Qu.:	2.668

Median	:0.001220	Median	:0.6818	Median	:	3.168

Mean	:0.001480	Mean	:0.7028	Mean	:	3.450

3rd	Qu.:0.001525	3rd	Qu.:0.7500	3rd	Qu.:	3.692

Max.	:0.009354	Max.	:1.0000	Max.	:18.996

mining	info:

		data	ntransactions	support	confidence

Groceries			9835	0.001		0.6

Enter	plot(rules)	 to	 display	 the	 scatterplot	 of	 the	 2,918	 rules	 (Figure	 5.3),	where	 the
horizontal	axis	is	the	support,	the	vertical	axis	is	the	confidence,	and	the	shading	is	the	lift.
The	scatterplot	shows	that,	of	 the	2,918	rules	generated	from	the	Groceries	dataset,	 the
highest	lift	occurs	at	a	low	support	and	a	low	confidence.

Figure	5.3	Scatterplot	of	the	2,918	rules	with	minimum	support	0.001	and	minimum
confidence	0.6

Entering	plot(rules@quality)	displays	a	scatterplot	matrix	(Figure	5.4)	 to	compare	 the
support,	confidence,	and	lift	of	the	2,918	rules.

Figure	5.4	Scatterplot	matrix	on	the	support,	confidence,	and	lift	of	the	2,918	rules

Figure	 5.4	 shows	 that	 lift	 is	 proportional	 to	 confidence	 and	 illustrates	 several	 linear
groupings.	 As	 indicated	 by	 Equation	 5.2	 and	 Equation	 5.3,	 .
Therefore,	when	the	support	of	Y	remains	the	same,	lift	is	proportional	to	confidence,	and
the	slope	of	the	linear	trend	is	the	reciprocal	of	 .	The	following	code	shows	that,	of

the	2,918	rules,	there	are	only	18	different	values	for	 ,	and	the	majority	occurs	at
slopes	3.91,	5.17,	7.17,	9.17,	and	9.53.	This	matches	the	slopes	shown	in	the	third	row	and
second	column	of	Figure	5.4,	where	the	x-axis	is	the	confidence	and	the	y-axis	is	the	lift.
#	compute	the	1/Support(Y)

slope	<-	sort(round(rules@quality$lift	/	rules@quality$confidence,	2))

#	Display	the	number	of	times	each	slope	appears	in	the	dataset

unlist(lapply(split(slope,f=slope),length))

3.91	5.17	5.44	5.73	7.17	9.05	9.17	9.53	10.64	12.08

1585	940	12		7	188		1	102	55		1		4

12.42	13.22	13.83	13.95	18.05	23.76	26.44	30.08

1		5		2		9		3		1		1		1

The	 inspect()	 function	 can	 display	 content	 of	 the	 rules	 generated	 previously.	 The
following	 code	 shows	 the	 top	 ten	 rules	 sorted	 by	 the	 lift.	 Rule	 {Instant	 food

products,soda}→{hamburger	meat}	has	the	highest	lift	of	18.995654.
inspect(head(sort(rules,	by=“lift”),	10))

lhs						rhs

support	confidence	lift

1	{Instant	food	products,

soda}					=>	{hamburger	meat}

0.001220132	0.6315789	18.995654

2	{soda,

popcorn}				=>	{salty	snack}

0.001220132	0.6315789	16.697793

3	{ham,

processed	cheese}		=>	{white	bread}

0.001931876	0.6333333	15.045491

4	{tropical	fruit,

other	vegetables,

yogurt,

white	bread}			=>	{butter}

0.001016777	0.6666667	12.030581

5	{hamburger	meat,

yogurt,

whipped/sour	cream}	=>	{butter}

0.001016777	0.6250000	11.278670

6	{tropical	fruit,

other	vegetables,

whole	milk,

yogurt,

domestic	eggs}			=>	{butter}

0.001016777	0.6250000	11.278670

7	{liquor,

red/blush	wine}		=>	{bottled	beer}

0.001931876	0.9047619	11.235269

8	{other	vegetables,

butter,

sugar}					=>	{whipped/sour	cream}

0.001016777	0.7142857	9.964539

9	{whole	milk,

butter,

hard	cheese}			=>	{whipped/sour	cream}

0.001423488	0.6666667	9.300236

10	{tropical	fruit,

other	vegetables,

butter,

fruit/vegetable	juice}	=>	{whipped/sour	cream}

0.001016777	0.6666667	9.300236

The	following	code	fetches	a	total	of	127	rules	whose	confidence	is	above	0.9:
confidentRules	<-	rules[quality(rules)$confidence	>	0.9]

confidentRules

set	of	127	rules

The	next	command	produces	a	matrix-based	visualization	(Figure	5.5)	of	the	LHS	versus
the	RHS	of	the	rules.	The	legend	on	the	right	is	a	color	matrix	indicating	the	lift	and	the
confidence	to	which	each	square	in	the	main	matrix	corresponds.
plot(confidentRules,	method=“matrix”,	measure=c(“lift”,	“confidence”),

		control=list(reorder=TRUE))

Figure	5.5	Matrix-based	visualization	of	LHS	and	RHS,	colored	by	lift	and	confidence

As	 the	 previous	 plot()	 command	 runs,	 the	 R	 console	 would	 simultaneously	 display	 a
distinct	 list	of	 the	LHS	and	RHS	from	 the	127	 rules.	A	segment	of	 the	output	 is	 shown
here:
Itemsets	in	Antecedent	(LHS)

[1]	“{citrus	fruit,other	vegetables,soda,fruit/vegetable	juice}”

[2]	“{tropical	fruit,other	vegetables,whole	milk,yogurt,oil}”

[3]	“{tropical	fruit,butter,whipped/sour	cream,fruit/vegetable

juice}”

[4]	“{tropical	fruit,grapes,whole	milk,yogurt}”

[5]	“{ham,tropical	fruit,pip	fruit,whole	milk}”

…

[124]	“{liquor,red/blush	wine}”

Itemsets	in	Consequent	(RHS)

[1]	“{whole	milk}”		“{yogurt}”			“{root	vegetables}”

[4]	“{bottled	beer}”		“{other	vegetables}”

The	following	code	provides	a	visualization	of	the	top	five	rules	with	the	highest	lift.	The
plot	is	shown	in	Figure	5.6.	In	the	graph,	the	arrow	always	points	from	an	item	on	the	LHS
to	an	item	on	the	RHS.	For	example,	the	arrows	that	connect	ham,	processed	cheese,	and
white	 bread	 suggest	 rule	{ham,processed	cheese}→{white	bread}.	 The	 legend	 on	 the
top	 right	 of	 the	 graph	 shows	 that	 the	 size	 of	 a	 circle	 indicates	 the	 support	 of	 the	 rules
ranging	from	0.001	to	0.002.	The	color	(or	shade)	represents	 the	lift,	which	ranges	from
11.279	 to	 18.996.	 The	 rule	 with	 the	 highest	 lift	 is	 {Instant	 food	 products,soda}	 →
{hamburger	meat}.
highLiftRules	<-	head(sort(rules,	by=“lift”),	5)

plot(highLiftRules,	method=“graph”,	control=list(type=“items”))

Figure	5.6	Graph	visualization	of	the	top	five	rules	sorted	by	lift

5.6	Validation	and	Testing
After	gathering	the	output	rules,	it	may	become	necessary	to	use	one	or	more	methods	to
validate	the	results	in	the	business	context	for	the	sample	dataset.	The	first	approach	can
be	 established	 through	 statistical	measures	 such	 as	 confidence,	 lift,	 and	 leverage.	Rules
that	 involve	 mutually	 independent	 items	 or	 cover	 few	 transactions	 are	 considered
uninteresting	because	they	may	capture	spurious	relationships.

As	 mentioned	 in	 Section	 5.3,	 confidence	 measures	 the	 chance	 that	 X	 and	 Y	 appear
together	 in	 relation	 to	 the	 chance	 X	 appears.	 Confidence	 can	 be	 used	 to	 identify	 the
interestingness	of	the	rules.

Lift	and	 leverage	both	compare	 the	support	of	X	and	Y	against	 their	 individual	support.
While	 mining	 data	 with	 association	 rules,	 some	 rules	 generated	 could	 be	 purely
coincidental.	For	example,	if	95%	of	customers	buy	X	and	90%	of	customers	buy	Y,	then
X	and	Y	would	occur	 together	at	 least	85%	of	 the	 time,	even	 if	 there	 is	no	 relationship
between	the	two.	Measures	like	lift	and	leverage	ensure	that	interesting	rules	are	identified
rather	than	coincidental	ones.

Another	set	of	criteria	can	be	established	through	subjective	arguments.	Even	with	a	high
confidence,	 a	 rule	 may	 be	 considered	 subjectively	 uninteresting	 unless	 it	 reveals	 any
unexpected	 profitable	 actions.	 For	 example,	 rules	 like	 {paper}→{pencil}	 may	 not	 be
subjectively	 interesting	 or	 meaningful	 despite	 high	 support	 and	 confidence	 values.	 In
contrast,	a	rule	like	{diaper}→{beer}	that	satisfies	both	minimum	support	and	minimum
confidence	can	be	considered	subjectively	interesting	because	this	rule	is	unexpected	and
may	 suggest	 a	 cross-sell	 opportunity	 for	 the	 retailer.	 This	 incorporation	 of	 subjective
knowledge	into	the	evaluation	of	rules	can	be	a	difficult	task,	and	it	requires	collaboration
with	 domain	 experts.	 As	 seen	 in	 Chapter	 2,	 “Data	 Analytics	 Lifecycle,”	 the	 domain
experts	may	serve	as	the	business	users	or	the	business	intelligence	analysts	as	part	of	the
Data	Science	 team.	In	Phase	5,	 the	 team	can	communicate	 the	results	and	decide	 if	 it	 is
appropriate	to	operationalize	them.

5.7	Diagnostics
Although	 the	Apriori	 algorithm	 is	 easy	 to	understand	and	 implement,	 some	of	 the	 rules
generated	are	uninteresting	or	practically	useless.	Additionally,	some	of	the	rules	may	be
generated	 due	 to	 coincidental	 relationships	 between	 the	 variables.	 Measures	 like
confidence,	 lift,	 and	 leverage	 should	 be	 used	 along	with	 human	 insights	 to	 address	 this
problem.

Another	 problem	with	 association	 rules	 is	 that,	 in	 Phase	 3	 and	 4	 of	 the	Data	Analytics
Lifecycle	 (Chapter	 2),	 the	 team	must	 specify	 the	 minimum	 support	 prior	 to	 the	 model
execution,	which	may	lead	to	too	many	or	too	few	rules.	In	related	research,	a	variant	of
the	algorithm	[13]	can	use	a	predefined	 target	 range	 for	 the	number	of	 rules	 so	 that	 the
algorithm	can	adjust	the	minimum	support	accordingly.

Section	 5.2	 presented	 the	 Apriori	 algorithm,	 which	 is	 one	 of	 the	 earliest	 and	 the	 most
fundamental	 algorithms	 for	 generating	 association	 rules.	 The	Apriori	 algorithm	 reduces
the	computational	workload	by	only	examining	itemsets	that	meet	the	specified	minimum
threshold.	However,	 depending	 on	 the	 size	 of	 the	 dataset,	 the	Apriori	 algorithm	 can	 be
computationally	expensive.	For	each	level	of	support,	the	algorithm	requires	a	scan	of	the
entire	database	to	obtain	the	result.	Accordingly,	as	the	database	grows,	it	takes	more	time
to	compute	in	each	run.	Here	are	some	approaches	to	improve	Apriori’s	efficiency:

	
Partitioning:	Any	itemset	that	is	potentially	frequent	in	a	transaction	database	must
be	frequent	in	at	least	one	of	the	partitions	of	the	transaction	database.
Sampling:	This	extracts	a	subset	of	the	data	with	a	lower	support	threshold	and	uses
the	subset	to	perform	association	rule	mining.
Transaction	reduction:	A	transaction	that	does	not	contain	frequent	k-itemsets	is
useless	in	subsequent	scans	and	therefore	can	be	ignored.
Hash-based	itemset	counting:	If	the	corresponding	hashing	bucket	count	of	a	k-
itemset	is	below	a	certain	threshold,	the	k-itemset	cannot	be	frequent.
Dynamic	itemset	counting:	Only	add	new	candidate	itemsets	when	all	of	their
subsets	are	estimated	to	be	frequent.

Summary
As	 an	 unsupervised	 analysis	 technique	 that	 uncovers	 relationships	 among	 items,
association	 rules	 find	 many	 uses	 in	 activities,	 including	 market	 basket	 analysis,
clickstream	 analysis,	 and	 recommendation	 engines.	 Although	 association	 rules	 are	 not
used	 to	 predict	 outcomes	 or	 behaviors,	 they	 are	 good	 at	 identifying	 “interesting”
relationships	within	items	from	a	large	dataset.	Quite	often,	the	disclosed	relationships	that
the	 association	 rules	 suggest	 do	 not	 seem	 obvious;	 they,	 therefore,	 provide	 valuable
insights	for	institutions	to	improve	their	business	operations.

The	 Apriori	 algorithm	 is	 one	 of	 the	 earliest	 and	 most	 fundamental	 algorithms	 for
association	rules.	This	chapter	used	a	grocery	store	example	to	walk	through	the	steps	of
Apriori	 and	 generate	 frequent	 k-itemsets	 and	 useful	 rules	 for	 downstream	 analysis	 and
visualization.	 A	 few	 measures	 such	 as	 support,	 confidence,	 lift,	 and	 leverage	 were
discussed.	These	measures	 together	 help	 identify	 the	 interesting	 rules	 and	 eliminate	 the
coincidental	 rules.	 Finally,	 the	 chapter	 discussed	 some	 pros	 and	 cons	 of	 the	 Apriori
algorithm	and	highlighted	a	few	methods	to	improve	its	efficiency.

Exercises
	
1.	 What	is	the	Apriori	property?
2.	 Following	is	a	list	of	five	transactions	that	include	items	A,	B,	C,	and	D:

T1	:	{	A,B,C	}
T2	:	{	A,C	}
T3	:	{	B,C	}
T4	:	{	A,D	}
T5	:	{	A,C,D	}

Which	itemsets	satisfy	the	minimum	support	of	0.5?	(Hint:	An	itemset	may
include	more	than	one	item.)

3.	 How	are	interesting	rules	identified?	How	are	interesting	rules	distinguished	from
coincidental	rules?

4.	 A	local	retailer	has	a	database	that	stores	10,000	transactions	of	last	summer.	After
analyzing	the	data,	a	data	science	team	has	identified	the	following	statistics:

{battery}	appears	in	6,000	transactions.
{sunscreen}	appears	in	5,000	transactions.
{sandals}	appears	in	4,000	transactions.
{bowls}	appears	in	2,000	transactions.
{battery,sunscreen}	appears	in	1,500	transactions.
{battery,sandals}	appears	in	1,000	transactions.
{battery,bowls}	appears	in	250	transactions.
{battery,sunscreen,sandals}	appears	in	600	transactions.

Answer	the	following	questions:

	
1.	 What	are	the	support	values	of	the	preceding	itemsets?
2.	 Assuming	the	minimum	support	is	0.05,	which	itemsets	are	considered

frequent?
3.	 What	are	the	confidence	values	of	{battery}→{sunscreen}	and

{battery,sunscreen}→{sandals}?	Which	of	the	two	rules	is	more	interesting?
4.	 List	all	the	candidate	rules	that	can	be	formed	from	the	statistics.	Which	rules

are	considered	interesting	at	the	minimum	confidence	0.25?	Out	of	these
interesting	rules,	which	rule	is	considered	the	most	useful	(that	is,	least
coincidental)?

Bibliography
	
1.	 [1]	P.	Hájek,	I.	Havel,	and	M.	Chytil,	“The	GUHA	Method	of	Automatic	Hypotheses

Determination,”	Computing,	vol.	1,	no.	4,	pp.	293–308,	1966.

2.	 [2]	R.	Agrawal,	T.	Imieliński,	and	A.	Swami,	“Mining	Association	Rules	Between
Sets	of	Items	in	Large	Databases,”	SIGMOD	‘93	Proceedings	of	the	1993	ACM
SIGMOD	International	Conference	on	Management	of	Data,	pp.	207–216,	1993.

3.	 [3]	M.-S.	Chen,	J.	S.	Park,	and	P.	Yu,	“Efficient	Data	Mining	for	Path	Traversal
Patterns,”	IEEE	Transactions	on	Knowledge	and	Data	Engineering,	vol.	10,	no.	2,
pp.	209–221,	1998.

4.	 [4]	R.	Cooley,	B.	Mobasher,	and	J.	Srivastava,	“Web	Mining:	Information	and	Pattern
Discovery	on	the	World	Wide	Web,”	Proceedings	of	the	9th	IEEE	International
Conference	on	Tools	with	Artificial	Intelligence,	pp.	558–567,	1997.

5.	 [5]	R.	Agrawal	and	R.	Srikant,	“Fast	Algorithms	for	Mining	Association	Rules	in
Large	Databases,”	in	Proceedings	of	the	20th	International	Conference	on	Very	Large
Data	Bases,	San	Francisco,	CA,	USA,	1994.

6.	 [6]	S.	Brin,	R.	Motwani,	J.	D.	Ullman,	and	S.	Tsur,	“Dynamic	Itemset	Counting	and
Implication	Rules	for	Market	Basket	Data,”	SIGMOD,	vol.	26,	no.	2,	pp.	255–264,
1997.

7.	 [7]	G.	Piatetsky-Shapiro,	“Discovery,	Analysis	and	Presentation	of	Strong	Rules,”
Knowledge	Discovery	in	Databases,	pp.	229–248,	1991.

8.	 [8]	S.	Brin,	R.	Motwani,	and	C.	Silverstein,	“Beyond	Market	Baskets:	Generalizing
Association	Rules	to	Correlations,”	Proceedings	of	the	ACM	SIGMOD/PODS	‘97
Joint	Conference,	vol.	26,	no.	2,	pp.	265–276,	1997.

9.	 [9]	C.	C.	Aggarwal	and	P.	S.	Yu,	“A	New	Framework	for	Itemset	Generation,”	in
Proceedings	of	the	Seventeenth	ACM	SIGACT-SIGMOD-SIGART	Symposium	on
Principles	of	Database	Systems	(PODS	‘98),	Seattle,	Washington,	USA,	1998.

10.	 [10]	M.	Hahsler,	“A	Comparison	of	Commonly	Used	Interest	Measures	for
Association	Rules,”	9	March	2011.	[Online].	Available:
http://michael.hahsler.net/research/	association_rules/measures.html.
[Accessed	4	March	2014].

11.	 [11]	W.	Lin,	S.	A.	Alvarez,	and	C.	Ruiz,	“Efficient	Adaptive-Support	Association
Rule	Mining	for	Recommender	Systems,”	Data	Mining	and	Knowledge	Discovery,
vol.	6,	no.	1,	pp.	83–105,	2002.

12.	 [12]	B.	Mobasher,	H.	Dai,	T.	Luo,	and	M.	Nakagawa,	“Effective	Personalization
Based	on	Association	Rule	Discovery	from	Web	Usage	Data,”	in	ACM,	2011.

13.	 [13]	W.	Lin,	S.	A.	Alvarez,	and	C.	Ruiz,	“Collaborative	Recommendation	via
Adaptive	Association	Rule	Mining,”	in	Proceedings	of	the	International	Workshop

http://michael.hahsler.net/research/ association_rules/measures.html

on	Web	Mining	for	E-Commerce	(WEBKDD),	Boston,	MA,	2000.

Chapter	6
Advanced	Analytical	Theory	and	Methods:	Regression

Key	Concepts
1.	 Categorical	Variable
2.	 Linear	Regression
3.	 Logistic	Regression
4.	 Ordinary	Least	Squares	(OLS)
5.	 Receiver	Operating	Characteristic	(ROC)	Curve
6.	 Residuals

In	general,	regression	analysis	attempts	to	explain	the	influence	that	a	set	of	variables	has
on	 the	 outcome	 of	 another	 variable	 of	 interest.	 Often,	 the	 outcome	 variable	 is	 called	 a
dependent	variable	because	the	outcome	depends	on	the	other	variables.	These	additional
variables	 are	 sometimes	 called	 the	 input	 variables	 or	 the	 independent	 variables.
Regression	analysis	is	useful	for	answering	the	following	kinds	of	questions:

	
What	is	a	person’s	expected	income?
What	is	the	probability	that	an	applicant	will	default	on	a	loan?

Linear	regression	is	a	useful	tool	for	answering	the	first	question,	and	logistic	regression	is
a	popular	method	for	addressing	the	second.	This	chapter	examines	these	two	regression
techniques	and	explains	when	one	technique	is	more	appropriate	than	the	other.

Regression	analysis	 is	a	useful	explanatory	tool	 that	can	identify	 the	 input	variables	 that
have	the	greatest	statistical	 influence	on	the	outcome.	With	such	knowledge	and	insight,
environmental	 changes	 can	 be	 attempted	 to	 produce	more	 favorable	 values	 of	 the	 input
variables.	For	example,	 if	 it	 is	 found	 that	 the	 reading	 level	of	10-year-old	students	 is	an
excellent	predictor	of	 the	students’	success	 in	high	school	and	a	factor	 in	 their	attending
college,	 then	 additional	 emphasis	 on	 reading	 can	 be	 considered,	 implemented,	 and
evaluated	to	improve	students’	reading	levels	at	a	younger	age.

6.1	Linear	Regression
Linear	regression	is	an	analytical	technique	used	to	model	the	relationship	between	several
input	 variables	 and	 a	 continuous	 outcome	 variable.	 A	 key	 assumption	 is	 that	 the
relationship	between	an	 input	variable	 and	 the	outcome	variable	 is	 linear.	Although	 this
assumption	may	appear	restrictive,	 it	 is	often	possible	 to	properly	 transform	the	input	or
outcome	 variables	 to	 achieve	 a	 linear	 relationship	 between	 the	 modified	 input	 and
outcome	 variables.	 Possible	 transformations	 will	 be	 covered	 in	more	 detail	 later	 in	 the
chapter.

The	physical	sciences	have	well-known	linear	models,	such	as	Ohm’s	Law,	which	states
that	the	electrical	current	flowing	through	a	resistive	circuit	is	linearly	proportional	to	the
voltage	applied	to	the	circuit.	Such	a	model	is	considered	deterministic	in	the	sense	that	if
the	input	values	are	known,	the	value	of	the	outcome	variable	is	precisely	determined.	A
linear	 regression	model	 is	 a	 probabilistic	 one	 that	 accounts	 for	 the	 randomness	 that	 can
affect	 any	 particular	 outcome.	Based	 on	 known	 input	 values,	 a	 linear	 regression	model
provides	 the	 expected	 value	 of	 the	 outcome	 variable	 based	 on	 the	 values	 of	 the	 input
variables,	but	 some	uncertainty	may	 remain	 in	predicting	any	particular	outcome.	Thus,
linear	regression	models	are	useful	in	physical	and	social	science	applications	where	there
may	be	considerable	variation	in	a	particular	outcome	based	on	a	given	set	of	input	values.
After	presenting	possible	linear	regression	use	cases,	the	foundations	of	linear	regression
modeling	are	provided.

6.1.1	Use	Cases
Linear	 regression	 is	 often	 used	 in	 business,	 government,	 and	 other	 scenarios.	 Some
common	practical	applications	of	linear	regression	in	the	real	world	include	the	following:

	
Real	estate:	A	simple	linear	regression	analysis	can	be	used	to	model	residential
home	prices	as	a	function	of	the	home’s	living	area.	Such	a	model	helps	set	or
evaluate	the	list	price	of	a	home	on	the	market.	The	model	could	be	further	improved
by	including	other	input	variables	such	as	number	of	bathrooms,	number	of
bedrooms,	lot	size,	school	district	rankings,	crime	statistics,	and	property	taxes.
Demand	forecasting:	Businesses	and	governments	can	use	linear	regression	models
to	predict	demand	for	goods	and	services.	For	example,	restaurant	chains	can
appropriately	prepare	for	the	predicted	type	and	quantity	of	food	that	customers	will
consume	based	upon	the	weather,	the	day	of	the	week,	whether	an	item	is	offered	as	a
special,	the	time	of	day,	and	the	reservation	volume.	Similar	models	can	be	built	to
predict	retail	sales,	emergency	room	visits,	and	ambulance	dispatches.
Medical:	A	linear	regression	model	can	be	used	to	analyze	the	effect	of	a	proposed
radiation	treatment	on	reducing	tumor	sizes.	Input	variables	might	include	duration	of
a	single	radiation	treatment,	frequency	of	radiation	treatment,	and	patient	attributes
such	as	age	or	weight.

6.1.2	Model	Description
As	the	name	of	this	technique	suggests,	the	linear	regression	model	assumes	that	there	is	a

linear	relationship	between	the	input	variables	and	the	outcome	variable.	This	relationship
can	be	expressed	as	shown	in	Equation	6.1.

6.1	

where:

	
1.	 	is	the	outcome	variable
2.	 	are	the	input	variables,	for	j	=	1,	2,	…,	p	–	1
3.	 	is	the	value	of	 	when	each	 	equals	zero
4.	 	is	the	change	in	 	based	on	a	unit	change	in	 ,	for	j	=	1,	2,	…,	p	–	1
5.	 	is	a	random	error	term	that	represents	the	difference	in	the	linear	model	and	a

particular	observed	value	for	

Suppose	 it	 is	desired	 to	build	a	 linear	 regression	model	 that	estimates	a	person’s	annual
income	as	 a	 function	of	 two	variables—age	and	education—both	 expressed	 in	years.	 In
this	case,	income	is	the	outcome	variable,	and	the	input	variables	are	age	and	education.
Although	it	may	be	an	over	generalization,	such	a	model	seems	intuitively	correct	in	the
sense	 that	people’s	 income	should	 increase	as	 their	skill	set	and	experience	expand	with
age.	 Also,	 the	 employment	 opportunities	 and	 starting	 salaries	 would	 be	 expected	 to	 be
greater	for	those	who	have	attained	more	education.

However,	 it	 is	 also	 obvious	 that	 there	 is	 considerable	 variation	 in	 income	 levels	 for	 a
group	of	people	with	identical	ages	and	years	of	education.	This	variation	is	represented
by	 	 in	 the	 model.	 So,	 in	 this	 example,	 the	 model	 would	 be	 expressed	 as	 shown	 in
Equation	6.2.

6.2	

In	 the	 linear	model,	 the	 	 represent	 the	unknown	p	parameters.	The	estimates	 for	 these
unknown	 parameters	 are	 chosen	 so	 that,	 on	 average,	 the	 model	 provides	 a	 reasonable
estimate	of	a	person’s	income	based	on	age	and	education.	In	other	words,	the	fitted	model
should	minimize	 the	overall	error	between	 the	 linear	model	and	 the	actual	observations.
Ordinary	Least	Squares	(OLS)	is	a	common	technique	to	estimate	the	parameters.

To	illustrate	how	OLS	works,	suppose	there	is	only	one	input	variable,	x,	for	an	outcome
variable	y.	Furthermore,	n	observations	of	(x,y)	are	obtained	and	plotted	in	Figure	6.1.

Figure	6.1	Scatterplot	of	y	versus	x

The	goal	 is	 to	find	 the	 line	 that	best	approximates	 the	relationship	between	the	outcome
variable	and	the	input	variables.	With	OLS,	the	objective	is	to	find	the	line	through	these
points	that	minimizes	the	sum	of	the	squares	of	the	difference	between	each	point	and	the
line	 in	 the	 vertical	 direction.	 In	 other	 words,	 find	 the	 values	 of	 	 and	 	 such	 that	 the
summation	shown	in	Equation	6.3	is	minimized.

6.3	

The	n	 individual	distances	 to	be	 squared	and	 then	summed	are	 illustrated	 in	Figure	6.2.
The	 vertical	 lines	 represent	 the	 distance	 between	 each	 observed	 y	 value	 and	 the	 line	

.

Figure	6.2	Scatterplot	of	y	versus	x	with	vertical	distances	from	the	observed	points	to	a
fitted	line

In	 Figure	 3.7	 of	 Chapter	 3,	 “Review	 of	 Basic	 Data	 Analytic	 Methods	 Using	 R,”	 the
Anscombe’s	Quartet	example	used	OLS	to	fit	the	linear	regression	line	to	each	of	the	four

datasets.	OLS	for	multiple	input	variables	is	a	straightforward	extension	of	the	one	input
variable	case	provided	in	Equation	6.3.

The	 preceding	 discussion	 provided	 the	 approach	 to	 find	 the	 best	 linear	 fit	 to	 a	 set	 of
observations.	However,	 by	making	 some	 additional	 assumptions	 on	 the	 error	 term,	 it	 is
possible	to	provide	further	capabilities	in	utilizing	the	linear	regression	model.	In	general,
these	assumptions	are	almost	always	made,	so	the	following	model,	built	upon	the	earlier
described	model,	is	simply	called	the	linear	regression	model.

Linear	Regression	Model	(with	Normally	Distributed	Errors)

In	the	previous	model	description,	there	were	no	assumptions	made	about	the	error	term;
no	 additional	 assumptions	 were	 necessary	 for	 OLS	 to	 provide	 estimates	 of	 the	 model
parameters.	However,	in	most	linear	regression	analyses,	it	is	common	to	assume	that	the
error	term	is	a	normally	distributed	random	variable	with	mean	equal	to	zero	and	constant
variance.	Thus,	the	linear	regression	model	is	expressed	as	shown	in	Equation	6.4.

6.4	

where:

	
1.	 	is	the	outcome	variable
2.	 	are	the	input	variables,	for	j	=	1,	2,…,	p	–	1
3.	 	is	the	value	of	 	when	each	 	equals	zero
4.	 	is	the	change	in	 	based	on	a	unit	change	in	 ,	for	j	=	1,	2,…,	p	–	1
5.	 	and	the	 	are	independent	of	each	other

This	additional	assumption	yields	the	following	result	about	the	expected	value	of	y,	E(y)
for	given	 :

Because	 	are	constants,	the	E(y)	is	the	value	of	the	linear	regression	model	for	the
given	 .	Furthermore,	the	variance	of	y,	V(y),	for	given	 	is	this:

Thus,	 for	a	given	 ,	 y	 is	 normally	distributed	with	mean	
and	variance	 .	For	a	regression	model	with	just	one	input	variable,	Figure	6.3	illustrates
the	normality	assumption	on	the	error	terms	and	the	effect	on	the	outcome	variable,	 ,	for
a	given	value	of	 .

Figure	6.3	Normal	distribution	about	y	for	a	given	value	of	x

For	 ,	one	would	expect	to	observe	a	value	of	 	near	20,	but	a	value	of	y	from	15	to	25
would	 appear	possible	based	on	 the	 illustrated	normal	distribution.	Thus,	 the	 regression
model	 estimates	 the	 expected	 value	 of	 	 for	 the	 given	 value	 of	 .	 Additionally,	 the
normality	 assumption	 on	 the	 error	 term	 provides	 some	 useful	 properties	 that	 can	 be
utilized	 in	 performing	 hypothesis	 testing	 on	 the	 linear	 regression	 model	 and	 providing
confidence	 intervals	 on	 the	 parameters	 and	 the	 mean	 of	 	 given	 .	 The
application	 of	 these	 statistical	 techniques	 is	 demonstrated	 by	 applying	 R	 to	 the	 earlier
linear	regression	model	on	income.

Example	in	R

Returning	 to	 the	 Income	 example,	 in	 addition	 to	 the	 variables	 age	 and	 education,	 the
person’s	gender,	female	or	male,	is	considered	an	input	variable.	The	following	code	reads
a	comma-separated-value	(CSV)	file	of	1,500	people’s	incomes,	ages,	years	of	education,
and	gender.	The	first	10	rows	are	displayed:
income_input	=	as.data.frame(read.csv(“c:/data/income.csv”))

income_input[1:10,]

ID	Income	Age	Education	Gender

1	1	113	69		12		1

2	2		91	52		18		0

3	3	121	65		14		0

4	4		81	58		12		0

5	5		68	31		16		1

6	6		92	51		15		1

7	7		75	53		15		0

8	8		76	56		13		0

9	9		56	42		15		1

10	10		53	33		11		1

Each	 person	 in	 the	 sample	 has	 been	 assigned	 an	 identification	 number,	 ID.	 Income	 is
expressed	 in	 thousands	 of	 dollars.	 (For	 example,	 113	 denotes	 $113,000.)	 As	 described
earlier,	Age	and	Education	are	expressed	in	years.	For	Gender,	a	0	denotes	female	and	a	1
denotes	male.	A	summary	of	the	imported	data	reveals	that	the	incomes	vary	from	$14,000

to	$134,000.	The	ages	are	between	18	and	70	years.	The	education	experience	 for	 each
person	varies	from	a	minimum	of	10	years	to	a	maximum	of	20	years.
summary(income_input)

		ID				Income			Age			Education

Min.	:	1.0	Min.	:	14.00	Min.	:18.00	Min.	:10.00

1st	Qu.:	375.8	1st	Qu.:	62.00	1st	Qu.:30.00	1st	Qu.:12.00

Median	:	750.5	Median	:	76.00	Median	:44.00	Median	:15.00

Mean	:	750.5	Mean	:	75.99	Mean	:43.58	Mean	:14.68

3rd	Qu.:1125.2	3rd	Qu.:	91.00	3rd	Qu.:57.00	3rd	Qu.:16.00

Max.	:1500.0	Max.	:134.00	Max.	:70.00	Max.	:20.00

		Gender

Min.	:0.00

1st	Qu.:0.00

Median	:0.00

Mean	:0.49

3rd	Qu.:1.00

Max.	:1.00

As	described	in	Chapter	3,	a	scatterplot	matrix	is	an	informative	tool	to	view	the	pair-wise
relationships	of	 the	variables.	The	basic	 assumption	of	 a	 linear	 regression	model	 is	 that
there	is	a	linear	relationship	between	the	outcome	variable	and	the	input	variables.	Using
the	 lattice	 package	 in	 R,	 the	 scatterplot	 matrix	 in	 Figure	 6.4	 is	 generated	 with	 the
following	R	code:
library(lattice)

splom(˜income_input[c(2:5)],	groups=NULL,	data=income_input,

		axis.line.tck	=	0,

		axis.text.alpha	=	0)

Figure	6.4	Scatterplot	matrix	of	the	variables

Because	 the	dependent	variable	 is	 typically	plotted	 along	 the	y-axis,	 examine	 the	 set	 of
scatterplots	along	the	bottom	of	the	matrix.	A	strong	positive	linear	trend	is	observed	for
Income	as	a	function	of	Age.	Against	Education,	a	slight	positive	trend	may	exist,	but	the
trend	 is	 not	 quite	 as	 obvious	 as	 is	 the	 case	 with	 the	 Age	 variable.	 Lastly,	 there	 is	 no
observed	effect	on	Income	based	on	Gender.

With	 this	 qualitative	 understanding	 of	 the	 relationships	 between	 Income	 and	 the	 input
variables,	 it	 seems	 reasonable	 to	quantitatively	 evaluate	 the	 linear	 relationships	of	 these
variables.	Utilizing	the	normality	assumption	applied	to	the	error	term,	the	proposed	linear
regression	model	is	shown	in	Equation	6.5.

6.5	

Using	the	linear	model	function,	lm(),	in	R,	the	income	model	can	be	applied	to	the	data
as	follows:
results	<-	lm(Income˜Age	+	Education	+	Gender,	income_input)

summary(results)

Call:

lm(formula	=	Income	˜	Age	+	Education	+	Gender,	data	=	income_input)

Residuals:

Min		1Q	Median		3Q		Max

-37.340	-8.101	0.139	7.885	37.271

Coefficients:

			Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	7.26299	1.95575	3.714	0.000212	***

Age			0.99520	0.02057	48.373	<	2e-16	***

Education	1.75788	0.11581	15.179	<	2e-16	***

Gender		-0.93433	0.62388	-1.498	0.134443

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	12.07	on	1496	degrees	of	freedom

Multiple	R-squared:	0.6364,	Adjusted	R-squared:	0.6357

F-statistic:	873	on	3	and	1496	DF,	p-value:	<	2.2e-16

The	intercept	term,	 ,	is	implicitly	included	in	the	model.	The	lm()	function	performs	the
parameter	estimation	for	the	parameters	 	(j	=	0,	1,	2,	3)	using	ordinary	least	squares	and
provides	 several	 useful	 calculations	 and	 results	 that	 are	 stored	 in	 the	 variable	 called
results	in	this	example.

After	the	stated	call	to	lm(),	a	few	statistics	on	the	residuals	are	displayed	in	the	output.
The	residuals	are	the	observed	values	of	the	error	term	for	each	of	the	n	observations	and
are	defined	for	i	=	1,	2,	…n,	as	shown	in	Equation	6.6.

6.6	

where	bj	denotes	the	estimate	for	parameter	βj	for	j	=	0,	1,	2,	…	p	–	1

From	the	R	output,	the	residuals	vary	from	approximately	–37	to	+37,	with	a	median	close
to	0.	Recall	 that	 the	 residuals	 are	 assumed	 to	be	normally	distributed	with	 a	mean	near
zero	and	a	constant	variance.	The	normality	assumption	is	examined	more	carefully	later.

The	 output	 provides	 details	 about	 the	 coefficients.	 The	 column	 Estimate	 provides	 the
OLS	 estimates	 of	 the	 coefficients	 in	 the	 fitted	 linear	 regression	 model.	 In	 general,	 the
(Intercept)	corresponds	to	the	estimated	response	variable	when	all	the	input	variables
equal	zero.	In	this	example,	the	intercept	corresponds	to	an	estimated	income	of	$7,263	for
a	newborn	female	with	no	education.	It	is	important	to	note	that	the	available	dataset	does
not	include	such	a	person.	The	minimum	age	and	education	in	the	dataset	are	18	and	10
years,	 respectively.	 Thus,	 misleading	 results	 may	 be	 obtained	 when	 using	 a	 linear
regression	 model	 to	 estimate	 outcomes	 for	 input	 values	 not	 representative	 within	 the
dataset	used	to	train	the	model.

The	 coefficient	 for	Age	 is	 approximately	 equal	 to	 one.	This	 coefficient	 is	 interpreted	 as
follows:	For	every	one	unit	increase	in	a	person’s	age,	the	person’s	income	is	expected	to
increase	by	$995.	Similarly,	 for	every	unit	 increase	 in	a	person’s	years	of	education,	 the
person’s	income	is	expected	to	increase	by	about	$1,758.

Interpreting	the	Gender	coefficient	is	slightly	different.	When	Gender	is	equal	to	zero,	the
Gender	 coefficient	 contributes	 nothing	 to	 the	 estimate	 of	 the	 expected	 income.	 When
Gender	is	equal	to	one,	the	expected	Income	is	decreased	by	about	$934.

Because	 the	 coefficient	values	 are	only	 estimates	based	on	 the	observed	 incomes	 in	 the

sample,	there	is	some	uncertainty	or	sampling	error	for	the	coefficient	estimates.	The	Std.
Error	 column	next	 to	 the	 coefficients	 provides	 the	 sampling	 error	 associated	with	 each
coefficient	 and	 can	 be	 used	 to	 perform	 a	 hypothesis	 test,	 using	 the	 t-distribution,	 to
determine	 if	 each	 coefficient	 is	 statistically	 different	 from	 zero.	 In	 other	 words,	 if	 a
coefficient	 is	 not	 statistically	 different	 from	 zero,	 the	 coefficient	 and	 the	 associated
variable	in	the	model	should	be	excluded	from	the	model.	In	this	example,	the	associated
hypothesis	 tests’	 p-values,	 Pr(>|t|),	 are	 very	 small	 for	 the	 Intercept,	 Age,	 and
Education	 parameters.	 As	 seen	 in	 Chapter	 3,	 a	 small	 p-value	 corresponds	 to	 a	 small
probability	that	such	a	large	t	value	would	be	observed	under	the	assumptions	of	the	null
hypothesis.	In	this	case,	for	a	given	j	=	0,	1,	2,	…,	p	–	1,	the	null	and	alternate	hypotheses
follow:

For	small	p-values,	as	is	the	case	for	the	Intercept,	Age,	and	Education	parameters,	the
null	hypothesis	would	be	rejected.	For	the	Gender	parameter,	the	corresponding	p-value	is
fairly	large	at	0.13.	In	other	words,	at	a	90%	confidence	level,	the	null	hypothesis	would
not	be	rejected.	So,	dropping	the	variable	Gender	from	the	linear	regression	model	should
be	considered.	The	following	R	code	provides	the	modified	model	results:
results2	<-	lm(Income	˜	Age	+	Education,	income_input)

summary(results2)

Call:

lm(formula	=	Income	˜	Age	+	Education,	data	=	income_input)

Residuals:

Min		1Q	Median		3Q		Max

-36.889	-7.892	0.185	8.200	37.740

Coefficients:

			Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	6.75822	1.92728	3.507	0.000467	***

Age			0.99603	0.02057	48.412	<	2e-16	***

Education	1.75860	0.11586	15.179	<	2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Residual	standard	error:	12.08	on	1497	degrees	of	freedom

Multiple	R-squared:	0.6359,	Adjusted	R-squared:	0.6354

F-statistic:	1307	on	2	and	1497	DF,	p-value:	<	2.2e-16

Dropping	 the	 Gender	 variable	 from	 the	 model	 resulted	 in	 a	 minimal	 change	 to	 the
estimates	of	the	remaining	parameters	and	their	statistical	significances.

The	 last	 part	 of	 the	displayed	 results	 provides	 some	 summary	 statistics	 and	 tests	 on	 the
linear	 regression	 model.	 The	 residual	 standard	 error	 is	 the	 standard	 deviation	 of	 the
observed	residuals.	This	value,	along	with	the	associated	degrees	of	freedom,	can	be	used
to	examine	the	variance	of	the	assumed	normally	distributed	error	terms.	R-squared	(R2)	is
a	commonly	reported	metric	that	measures	the	variation	in	the	data	that	is	explained	by	the
regression	 model.	 Possible	 values	 of	 R2	 vary	 from	 0	 to	 1,	 with	 values	 closer	 to	 1
indicating	that	the	model	is	better	at	explaining	the	data	than	values	closer	to	0.	An	R2	of
exactly	1	 indicates	 that	 the	model	explains	perfectly	 the	observed	data	 (all	 the	 residuals
are	equal	to	0).	In	general,	the	R2	value	can	be	increased	by	adding	more	variables	to	the
model.	However,	just	adding	more	variables	to	explain	a	given	dataset	but	not	to	improve

the	explanatory	nature	of	the	model	is	known	as	overfitting.	To	address	the	possibility	of
overfitting	the	data,	the	adjusted	R2	accounts	for	the	number	of	parameters	included	in	the
linear	regression	model.

The	F-statistic	provides	a	method	for	testing	the	entire	regression	model.	In	the	previous	t-
tests,	 individual	 tests	 were	 conducted	 to	 determine	 the	 statistical	 significance	 of	 each
parameter.	The	provided	F-statistic	 and	 corresponding	p-value	 enable	 the	 analyst	 to	 test
the	following	hypotheses:

In	this	example,	the	p-value	of	2.2e	–	16	is	small,	which	indicates	that	the	null	hypothesis
should	be	rejected.

Categorical	Variables

In	the	previous	example,	the	variable	Gender	was	a	simple	binary	variable	that	indicated
whether	a	person	is	female	or	male.	In	general,	these	variables	are	known	as	categorical
variables.	To	illustrate	how	to	use	categorical	variables	properly,	suppose	it	was	decided
in	 the	 earlier	Income	 example	 to	 include	 an	 additional	 variable,	State,	 to	 represent	 the
U.S.	 state	 where	 the	 person	 resides.	 Similar	 to	 the	 use	 of	 the	 Gender	 variable,	 one
possible,	but	 incorrect,	approach	would	be	to	include	a	State	variable	that	would	take	a
value	of	0	 for	Alabama,	1	 for	Alaska,	2	 for	Arizona,	 and	 so	on.	The	problem	with	 this
approach	is	that	such	a	numeric	assignment	based	on	an	alphabetical	ordering	of	the	states
does	not	provide	a	meaningful	measure	of	the	difference	in	the	states.	For	example,	 is	 it
useful	 or	 proper	 to	 consider	 Arizona	 to	 be	 one	 unit	 greater	 than	 Alaska	 and	 two	 units
greater	that	Alabama?

In	regression,	a	proper	way	to	implement	a	categorical	variable	that	can	take	on	m	different
values	is	to	add	m-1	binary	variables	to	the	regression	model.	To	illustrate	with	the	Income
example,	a	binary	variable	for	each	of	49	states,	excluding	Wyoming	(arbitrarily	chosen	as
the	last	of	50	states	in	an	alphabetically	sorted	list),	could	be	added	to	the	model.
results3	<-	lm(Income˜Age	+	Education,

				+	Alabama,

				+	Alaska,

				+	Arizona,

				.

				.

				.

				+	WestVirginia,

				+	Wisconsin,

				income_input)

The	input	file	would	have	49	columns	added	for	these	variables	representing	each	of	the
first	49	states.	If	a	person	was	from	Alabama,	the	Alabama	variable	would	be	equal	to	1,
and	the	other	48	variables	would	be	set	to	0.	This	process	would	be	applied	for	the	other
state	 variables.	 So,	 a	 person	 from	Wyoming,	 the	 one	 state	 not	 explicitly	 stated	 in	 the
model,	 would	 be	 identified	 by	 setting	 all	 49	 state	 variables	 equal	 to	 0.	 In	 this
representation,	 Wyoming	 would	 be	 considered	 the	 reference	 case,	 and	 the	 regression
coefficients	of	the	other	state	variables	would	represent	the	difference	in	income	between

Wyoming	and	a	particular	state.

Confidence	Intervals	on	the	Parameters

Once	 an	 acceptable	 linear	 regression	model	 is	 developed,	 it	 is	 often	helpful	 to	 use	 it	 to
draw	 some	 inferences	 about	 the	model	 and	 the	 population	 from	which	 the	 observations
were	drawn.	Earlier,	we	saw	that	t-tests	could	be	used	to	perform	hypothesis	tests	on	the
individual	model	parameters,	 ,	 j	=	0,	 1,	…,	p	–	1.	Alternatively,	 these	 t-tests	 could	be
expressed	in	terms	of	confidence	intervals	on	the	parameters.	R	simplifies	the	computation
of	confidence	 intervals	on	 the	parameters	with	 the	use	of	 the	confint()	 function.	From
the	Income	example,	the	following	R	command	provides	95%	confidence	intervals	on	the
intercept	and	the	coefficients	for	the	two	variables,	Age	and	Education.
confint(results2,	level	=	.95)

				2.5	%	97.5	%

(Intercept)	2.9777598	10.538690

Age			0.9556771	1.036392

Education	1.5313393	1.985862

Based	 on	 the	 data,	 the	 earlier	 estimated	 value	 of	 the	 Education	 coefficient	 was	 1.76.
Using	 confint(),	 the	 corresponding	 95%	 confidence	 interval	 is	 (1.53,	 1.99),	 which
provides	 the	 amount	 of	 uncertainty	 in	 the	 estimate.	 In	 other	words,	 in	 repeated	 random
sampling,	 the	 computed	 confidence	 interval	 straddles	 the	 true	 but	 unknown	 coefficient
95%	 of	 the	 time.	 As	 expected	 from	 the	 earlier	 t-test	 results,	 none	 of	 these	 confidence
intervals	straddles	zero.

Confidence	Interval	on	the	Expected	Outcome

In	addition	to	obtaining	confidence	intervals	on	the	model	parameters,	it	is	often	desirable
to	obtain	a	confidence	interval	on	the	expected	outcome.	In	the	Income	example,	the	fitted
linear	regression	provides	the	expected	income	for	a	given	Age	and	Education.	However,
that	particular	point	estimate	does	not	provide	information	on	the	amount	of	uncertainty	in
that	estimate.	Using	 the	predict()	 function	 in	R,	a	confidence	 interval	on	 the	expected
outcome	can	be	obtained	for	a	given	set	of	input	variable	values.

In	 this	 illustration,	 a	 data	 frame	 is	 built	 containing	 a	 specific	 age	 and	 education	 value.
Using	this	set	of	input	variable	values,	the	predict()	function	provides	a	95%	confidence
interval	on	the	expected	Income	for	a	41-year-old	person	with	12	years	of	education.
Age	<-	41

Education	<-	12

new_pt	<-	data.frame(Age,	Education)

conf_int_pt	<-	predict(results2,new_pt,level=.95,interval=“confidence”)

conf_int_pt

		fit		lwr		upr

1	68.69884	67.83102	69.56667

For	 this	 set	 of	 input	 values,	 the	 expected	 income	 is	 $68,699	 with	 a	 95%	 confidence
interval	of	($67,831,	$69,567).

Prediction	Interval	on	a	Particular	Outcome

The	 previous	 confidence	 interval	 was	 relatively	 close	 (+/–	 approximately	 $900)	 to	 the

fitted	value.	However,	 this	 confidence	 interval	 should	not	be	 considered	as	 representing
the	uncertainty	 in	estimating	a	particular	person’s	 income.	The	predict()	 function	 in	R
also	 provides	 the	 ability	 to	 calculate	 upper	 and	 lower	 bounds	 on	 a	 particular	 outcome.
Such	bounds	provide	what	are	referred	to	as	prediction	intervals.	Returning	to	the	Income
example,	in	R	the	95%	prediction	interval	on	the	Income	for	a	41-year-old	person	with	12
years	of	education	is	obtained	as	follows:
pred_int_pt	<-	predict(results2,new_pt,level=.95,interval=“prediction”)

pred_int_pt

		fit		lwr		upr

1	68.69884	44.98867	92.40902

Again,	the	expected	income	is	$68,699.	However,	the	95%	prediction	interval	is	($44,988,
$92,409).	 If	 the	 reason	 for	 this	much	wider	 interval	 is	not	obvious,	 recall	 that	 in	Figure
6.3,	for	a	particular	input	variable	value,	the	expected	outcome	falls	on	the	regression	line,
but	the	individual	observations	are	normally	distributed	about	the	expected	outcome.	The
confidence	 interval	applies	 to	 the	expected	outcome	that	 falls	on	 the	regression	 line,	but
the	prediction	interval	applies	to	an	outcome	that	may	appear	anywhere	within	the	normal
distribution.

Thus,	 in	 linear	 regression,	 confidence	 intervals	 are	 used	 to	 draw	 inferences	 on	 the
population’s	expected	outcome,	and	prediction	intervals	are	used	to	draw	inferences	on	the
next	possible	outcome.

6.1.3	Diagnostics
The	use	of	hypothesis	tests,	confidence	intervals,	and	prediction	intervals	is	dependent	on
the	 model	 assumptions	 being	 true.	 The	 following	 discussion	 provides	 some	 tools	 and
techniques	that	can	be	used	to	validate	a	fitted	linear	regression	model.

Evaluating	the	Linearity	Assumption

A	major	 assumption	 in	 linear	 regression	 modeling	 is	 that	 the	 relationship	 between	 the
input	variables	and	the	outcome	variable	is	linear.	The	most	fundamental	way	to	evaluate
such	 a	 relationship	 is	 to	 plot	 the	 outcome	 variable	 against	 each	 input	 variable.	 In	 the
Income	 example,	 such	 scatterplots	 were	 generated	 in	 Figure	 6.4.	 If	 the	 relationship
between	Age	and	Income	is	represented	as	illustrated	in	Figure	6.5,	a	linear	model	would
not	apply.	In	such	a	case,	it	is	often	useful	to	do	any	of	the	following:

	
Transform	the	outcome	variable.
Transform	the	input	variables.
Add	extra	input	variables	or	terms	to	the	regression	model.

Figure	6.5	Income	as	a	quadratic	function	of	Age

Common	 transformations	 include	 taking	 square	 roots	 or	 the	 logarithm	 of	 the	 variables.
Another	option	is	to	create	a	new	input	variable	such	as	the	age	squared	and	add	it	to	the
linear	 regression	model	 to	 fit	 a	quadratic	 relationship	between	an	 input	variable	and	 the
outcome.

Additional	use	of	transformations	will	be	considered	when	evaluating	the	residuals.

Evaluating	the	Residuals

As	stated	previously,	it	is	assumed	that	the	error	terms	in	the	linear	regression	model	are
normally	distributed	with	a	mean	of	zero	and	a	constant	variance.	If	this	assumption	does
not	 hold,	 the	 various	 inferences	 that	 were	 made	 with	 the	 hypothesis	 tests,	 confidence
intervals,	and	prediction	intervals	are	suspect.

To	check	for	constant	variance	across	all	y	values	along	the	regression	line,	use	a	simple
plot	 of	 the	 residuals	 against	 the	 fitted	 outcome	 values.	Recall	 that	 the	 residuals	 are	 the
difference	between	the	observed	outcome	variables	and	the	fitted	value	based	on	the	OLS
parameter	 estimates.	 Because	 of	 the	 importance	 of	 examining	 the	 residuals,	 the	 lm()
function	in	R	automatically	calculates	and	stores	the	fitted	values	and	the	residuals,	in	the
components	fitted.values	and	residuals	in	the	output	of	the	lm()	function.	Using	the
Income	 regression	model	 output	 stored	 in	results2,	Figure	6.6	was	 generated	with	 the
following	R	code:
with(results2,	{

plot(fitted.values,	residuals,ylim=c(-40,40))

			points(c(min(fitted.values),max(fitted.values)),

				c(0,0),	type	=	“l”)})

Figure	6.6	Residual	plot	indicating	constant	variance

The	 plot	 in	 Figure	 6.6	 indicates	 that	 regardless	 of	 income	 value	 along	 the	 fitted	 linear
regression	 model,	 the	 residuals	 are	 observed	 somewhat	 evenly	 on	 both	 sides	 of	 the
reference	zero	line,	and	the	spread	of	the	residuals	is	fairly	constant	from	one	fitted	value
to	 the	 next.	 Such	 a	 plot	 would	 support	 the	 mean	 of	 zero	 and	 the	 constant	 variance
assumptions	on	the	error	terms.

If	 the	residual	plot	appeared	like	any	of	 those	in	Figures	6.7	 through	6.10,	 then	some	of
the	 earlier	 discussed	 transformations	 or	 possible	 input	 variable	 additions	 should	 be
considered	and	attempted.	Figure	6.7	 illustrates	 the	existence	of	a	nonlinear	 trend	 in	 the
residuals.	 Figure	 6.8	 illustrates	 that	 the	 residuals	 are	 not	 centered	 on	 zero.	 Figure	 6.9
indicates	 a	 linear	 trend	 in	 the	 residuals	 across	 the	 various	 outcomes	 along	 the	 linear
regression	model.	This	plot	may	 indicate	a	missing	variable	or	 term	from	the	regression
model.	Figure	6.10	provides	an	example	in	which	the	variance	of	the	error	terms	is	not	a
constant	but	increases	along	the	fitted	linear	regression	model.

Figure	6.7	Residuals	with	a	nonlinear	trend

Figure	6.8	Residuals	not	centered	on	the	zero	line

Figure	6.9	Residuals	with	a	linear	trend

Figure	6.10	Residuals	with	nonconstant	variance

Evaluating	the	Normality	Assumption

The	residual	plots	are	useful	for	confirming	that	the	residuals	were	centered	on	zero	and
have	a	constant	variance.	However,	the	normality	assumption	still	has	to	be	validated.	As
shown	 in	 Figure	 6.11,	 the	 following	R	 code	 provides	 a	 histogram	 plot	 of	 the	 residuals

from	results2,	the	output	from	the	Income	example:
hist(results2$residuals,	main=””)

Figure	6.11	Histogram	of	normally	distributed	residuals

From	 the	 histogram,	 it	 is	 seen	 that	 the	 residuals	 are	 centered	 on	 zero	 and	 appear	 to	 be
symmetric	 about	 zero,	 as	 one	would	 expect	 for	 a	 normally	distributed	 random	variable.
Another	 option	 is	 to	 examine	 a	 Q-Q	 plot	 that	 compares	 the	 observed	 data	 against	 the
quantiles	(Q)	of	the	assumed	distribution.	In	R,	the	following	code	generates	the	Q-Q	plot
shown	in	Figure	6.12	for	the	residuals	from	the	Income	example	and	provides	the	line	that
the	points	should	follow	for	values	from	a	normal	distribution.
qqnorm(results2$residuals,	ylab=“Residuals”,	main=””)

qqline(results2$residuals)

Figure	6.12	Q-Q	plot	of	normally	distributed	residuals

A	Q-Q	plot	 as	 provided	 in	Figure	6.13	would	 indicate	 that	 additional	 refinement	 of	 the
model	is	required	to	achieve	normally	distributed	error	terms.

Figure	6.13	Q-Q	plot	of	non-normally	distributed	residuals

N-Fold	Cross-Validation

To	prevent	overfitting	a	given	dataset,	a	common	practice	 is	 to	randomly	split	 the	entire
dataset	 into	a	 training	set	and	a	 testing	set.	Once	the	model	 is	developed	on	the	 training
set,	the	model	is	evaluated	against	the	testing	set.	When	there	is	not	enough	data	to	create
training	and	testing	sets,	an	N-fold	cross-validation	technique	may	be	helpful	to	compare
one	fitted	model	against	another.	In	N-fold	cross-validation,	the	following	occurs:

	
The	entire	dataset	is	randomly	split	into	N	datasets	of	approximately	equal	size.
A	model	is	trained	against	N	–	1	of	these	datasets	and	tested	against	the	remaining
dataset.	A	measure	of	the	model	error	is	obtained.
This	process	is	repeated	a	total	of	N	times	across	the	various	combinations	of	N
datasets	taken	N	–	1	at	a	time.	Recall:

The	observed	N	model	errors	are	averaged	over	the	N	folds.

The	averaged	error	from	one	model	is	compared	against	the	averaged	error	from	another
model.	 This	 technique	 can	 also	 help	 determine	 whether	 adding	 more	 variables	 to	 an
existing	model	is	beneficial	or	possibly	overfitting	the	data.

Other	Diagnostic	Considerations

Although	a	fitted	linear	regression	model	conforms	with	the	preceding	diagnostic	criteria,
it	 is	 possible	 to	 improve	 the	 model	 by	 including	 additional	 input	 variables	 not	 yet
considered.	 In	 the	 previous	 Income	 example,	 only	 three	 possible	 input	 variables—Age,
Education,	and	Gender—were	considered.	Dozens	of	other	additional	input	variables	such
as	Housing	or	Marital_Status	may	improve	the	fitted	model.	It	is	important	to	consider
all	possible	input	variables	early	in	the	analytic	process.

As	mentioned	earlier,	in	reviewing	the	R	output	from	fitting	a	linear	regression	model,	the
adjusted	R2	applies	a	penalty	to	the	R2	value	based	on	the	number	of	parameters	added	to

the	model.	Because	 the	R2	 value	will	 always	move	 closer	 to	 one	 as	more	 variables	 are
added	to	an	existing	regression	model,	the	adjusted	R2	value	may	actually	decrease	after
adding	more	variables.

The	residual	plots	should	be	examined	for	any	outliers,	observed	points	that	are	markedly
different	from	the	majority	of	the	points.	Outliers	can	result	from	bad	data	collection,	data
processing	 errors,	 or	 an	 actual	 rare	occurrence.	 In	 the	Income	 example,	 suppose	 that	 an
individual	 with	 an	 income	 of	 a	 million	 dollars	 was	 included	 in	 the	 dataset.	 Such	 an
observation	 could	 affect	 the	 fitted	 regression	model,	 as	 seen	 in	 one	 of	 the	 examples	 of
Anscombe’s	Quartet.

Finally,	the	magnitudes	and	signs	of	the	estimated	parameters	should	be	examined	to	see	if
they	make	sense.	For	example,	suppose	a	negative	coefficient	for	the	Education	variable	in
the	 Income	 example	 was	 obtained.	 Because	 it	 is	 natural	 to	 assume	 that	 more	 years	 of
education	lead	to	higher	incomes,	either	something	very	unexpected	has	been	discovered,
or	there	is	some	issue	with	the	model,	how	the	data	was	collected,	or	some	other	factor.	In
either	case,	further	investigation	is	warranted.

6.2	Logistic	Regression
In	 linear	 regression	modeling,	 the	outcome	variable	 is	a	continuous	variable.	As	seen	 in
the	 earlier	 Income	 example,	 linear	 regression	 can	 be	 used	 to	 model	 the	 relationship
between	 age	 and	 education	 to	 income.	 Suppose	 a	 person’s	 actual	 income	 was	 not	 of
interest,	 but	 rather	 whether	 someone	 was	 wealthy	 or	 poor.	 In	 such	 a	 case,	 when	 the
outcome	 variable	 is	 categorical	 in	 nature,	 logistic	 regression	 can	 be	 used	 to	 predict	 the
likelihood	of	an	outcome	based	on	the	input	variables.	Although	logistic	regression	can	be
applied	 to	 an	outcome	variable	 that	 represents	multiple	values,	 the	 following	discussion
examines	the	case	in	which	the	outcome	variable	represents	two	values	such	as	true/false,
pass/fail,	or	yes/no.

For	example,	a	logistic	regression	model	can	be	built	to	determine	if	a	person	will	or	will
not	purchase	a	new	automobile	in	the	next	12	months.	The	training	set	could	include	input
variables	 for	 a	 person’s	 age,	 income,	 and	 gender	 as	 well	 as	 the	 age	 of	 an	 existing
automobile.	 The	 training	 set	 would	 also	 include	 the	 outcome	 variable	 on	 whether	 the
person	purchased	a	new	automobile	over	a	12-month	period.	The	logistic	regression	model
provides	 the	 likelihood	 or	 probability	 of	 a	 person	 making	 a	 purchase	 in	 the	 next	 12
months.	 After	 examining	 a	 few	 more	 use	 cases	 for	 logistic	 regression,	 the	 remaining
portion	of	this	chapter	examines	how	to	build	and	evaluate	a	logistic	regression	model.

6.2.1	Use	Cases
The	logistic	regression	model	is	applied	to	a	variety	of	situations	in	both	the	public	and	the
private	sector.	Some	common	ways	that	the	logistic	regression	model	is	used	include	the
following:

	
Medical:	Develop	a	model	to	determine	the	likelihood	of	a	patient’s	successful
response	to	a	specific	medical	treatment	or	procedure.	Input	variables	could	include
age,	weight,	blood	pressure,	and	cholesterol	levels.
Finance:	Using	a	loan	applicant’s	credit	history	and	the	details	on	the	loan,
determine	the	probability	that	an	applicant	will	default	on	the	loan.	Based	on	the
prediction,	the	loan	can	be	approved	or	denied,	or	the	terms	can	be	modified.
Marketing:	Determine	a	wireless	customer’s	probability	of	switching	carriers
(known	as	churning)	based	on	age,	number	of	family	members	on	the	plan,	months
remaining	on	the	existing	contract,	and	social	network	contacts.	With	such	insight,
target	the	high-probability	customers	with	appropriate	offers	to	prevent	churn.
Engineering:	Based	on	operating	conditions	and	various	diagnostic	measurements,
determine	the	probability	of	a	mechanical	part	experiencing	a	malfunction	or	failure.
With	this	probability	estimate,	schedule	the	appropriate	preventive	maintenance
activity.

6.2.2	Model	Description
Logistic	regression	is	based	on	the	logistic	function	 ,	as	given	in	Equation	6.7.

6.7	

Note	that	as	 .	So,	as	Figure	6.14	illustrates,	the	value	of	the
logistic	function	 	varies	from	0	to	1	as	y	increases.

Figure	6.14	The	logistic	function

Because	 the	 range	 of	 	 is	 (0,	 1),	 the	 logistic	 function	 appears	 to	 be	 an	 appropriate
function	 to	model	 the	 probability	 of	 a	 particular	 outcome	 occurring.	As	 the	 value	 of	 y
increases,	 the	probability	of	 the	outcome	occurring	increases.	In	any	proposed	model,	 to
predict	 the	 likelihood	of	an	outcome,	y	needs	 to	be	a	 function	of	 the	 input	variables.	 In
logistic	 regression,	 y	 is	 expressed	 as	 a	 linear	 function	 of	 the	 input	 variables.	 In	 other
words,	the	formula	shown	in	Equation	6.8	applies.

6.8	

Then,	 based	 on	 the	 input	 variables	 ,	 the	 probability	 of	 an	 event	 is	 shown	 in
Equation	6.9.

6.9	

Equation	6.8	is	comparable	to	Equation	6.1	used	in	linear	regression	modeling.	However,
one	difference	 is	 that	 the	values	of	y	are	not	directly	observed.	Only	 the	value	of	 	 in
terms	of	success	or	failure	(typically	expressed	as	1	or	0,	respectively)	is	observed.

Using	 p	 to	 denote	 ,	 Equation	 6.9	 can	 be	 rewritten	 in	 the	 form	 provided	 in	 Equation
6.10.

6.10	

The	 quantity	 ,	 in	 Equation	 6.10	 is	 known	 as	 the	 log	 odds	 ratio,	 or	 the	 logit	 of	 p.
Techniques	 such	 as	 Maximum	 Likelihood	 Estimation	 (MLE)	 are	 used	 to	 estimate	 the
model	parameters.	MLE	determines	the	values	of	the	model	parameters	that	maximize	the
chances	of	observing	the	given	dataset.	However,	the	specifics	of	implementing	MLE	are

beyond	the	scope	of	this	book.

The	 following	example	helps	 to	 clarify	 the	 logistic	 regression	model.	The	mechanics	of
using	R	to	fit	a	logistic	regression	model	are	covered	in	the	next	section	on	evaluating	the
fitted	model.	In	this	section,	the	discussion	focuses	on	interpreting	the	fitted	model.

Customer	Churn	Example

A	wireless	telecommunications	company	wants	to	estimate	the	probability	that	a	customer
will	 churn	 (switch	 to	 a	 different	 company)	 in	 the	 next	 six	 months.	 With	 a	 reasonably
accurate	prediction	of	a	person’s	 likelihood	of	churning,	 the	sales	and	marketing	groups
can	attempt	 to	 retain	 the	customer	by	offering	various	 incentives.	Data	on	8,000	current
and	prior	customers	was	obtained.	The	variables	collected	for	each	customer	follow:

	
Age	(years)
Married	(true/false)
Duration	as	a	customer	(years)
Churned_contacts	(count)—Number	of	the	customer’s	contacts	that	have	churned
(count)
Churned	(true/false)—Whether	the	customer	churned

After	 analyzing	 the	 data	 and	 fitting	 a	 logistic	 regression	 model,	 Age	 and
Churned_contacts	were	selected	as	 the	best	predictor	variables.	Equation	6.11	 provides
the	estimated	model	parameters.

6.11	

Using	 the	 fitted	 model	 from	 Equation	 6.11,	 Table	 6.1	 provides	 the	 probability	 of	 a
customer	churning	based	on	the	customer’s	age	and	the	number	of	churned	contacts.	The
computed	values	of	 	are	also	provided	in	the	table.	Recalling	the	previous	discussion	of
the	logistic	function,	as	the	value	of	y	increases,	so	does	the	probability	of	churning.

Table	6.1	Estimated	Churn	Probabilities

Customer Age	(Years) Churned_Contacts y Prob.	of	Churning
1 50 1 –4.12 0.016
2 50 3 –3.36 0.034
3 50 6 –2.22 0.098
4 30 1 –0.92 0.285
5 30 3 –0.16 0.460
6 30 6 0.98 0.727
7 20 1 0.68 0.664
8 20 3 1.44 0.808
9 20 6 2.58 0.930

Based	on	the	fitted	model,	there	is	a	93%	chance	that	a	20-year-old	customer	who	has	had
six	contacts	churn	will	also	churn.	(See	the	last	row	of	Table	6.1.)	Examining	the	sign	and
values	of	 the	 estimated	coefficients	 in	Equation	6.11,	 it	 is	observed	 that	 as	 the	value	of
Age	 increases,	 the	value	of	y	decreases.	Thus,	the	negative	Age	coefficient	indicates	that
the	probability	of	churning	decreases	for	an	older	customer.	On	the	other	hand,	based	on
the	positive	sign	of	the	Churned_Contacts	coefficient,	the	value	of	y	and	subsequently	the
probability	of	churning	increases	as	the	number	of	churned	contacts	increases.

6.2.3	Diagnostics
The	churn	example	illustrates	how	to	interpret	a	fitted	logistic	regression	model.	Using	R,
this	 section	 examines	 the	 steps	 to	 develop	 a	 logistic	 regression	model	 and	 evaluate	 the
model’s	 effectiveness.	 For	 this	 example,	 the	 churn_input	 data	 frame	 is	 structured	 as
follows:
head(churn_input)

ID	Churned	Age	Married	Cust_years	Churned_contacts

1	1		0	61		1			3				1

2	2		0	50		1			3				2

3	3		0	47		1			2				0

4	4		0	50		1			3				3

5	5		0	29		1			1				3

6	6		0	43		1			4				3

A	Churned	value	of	1	indicates	that	the	customer	churned.	A	Churned	value	of	0	indicates
that	 the	 customer	 remained	 as	 a	 subscriber.	 Out	 of	 the	 8,000	 customer	 records	 in	 this
dataset,	1,743	customers	(˜22%)	churned.
sum(churn_input$Churned)

[1]	1743

Using	the	Generalized	Linear	Model	function,	glm(),	in	R	and	the	specified	family/link,	a
logistic	 regression	model	can	be	applied	 to	 the	variables	 in	 the	dataset	and	examined	as
follows:
Churn_logistic1	<-	glm	(Churned˜Age	+	Married	+	Cust_years	+

						Churned_contacts,	data=churn_input,

						family=binomial(link=“logit”))

summary(Churn_logistic1)

Coefficients:

					Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)		3.415201	0.163734	20.858	<2e-16	***

Age				-0.156643	0.004088	-38.320	<2e-16	***

Married			0.066432	0.068302	0.973	0.331

Cust_years		0.017857	0.030497	0.586	0.558

Churned_contacts	0.382324	0.027313	13.998	<2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

As	 in	 the	 linear	 regression	 case,	 there	 are	 tests	 to	 determine	 if	 the	 coefficients	 are
significantly	different	from	zero.	Such	significant	coefficients	correspond	to	small	values
of	Pr(>|z|),	which	denote	the	p-value	for	the	hypothesis	test	to	determine	if	the	estimated

model	parameter	is	significantly	different	from	zero.	Rerunning	this	analysis	without	the
Cust_years	variable,	which	had	the	largest	corresponding	p-value,	yields	the	following:
Churn_logistic2	<-	glm	(Churned˜Age	+	Married	+	Churned_contacts,

						data=churn_input,	family=binomial(link=“logit”))

summary(Churn_logistic2)

Coefficients:

					Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)		3.472062	0.132107	26.282	<2e-16	***

Age				-0.156635	0.004088	-38.318	<2e-16	***

Married			0.066430	0.068299	0.973	0.331

Churned_contacts	0.381909	0.027302	13.988	<2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

Because	the	p-value	for	the	Married	coefficient	remains	quite	large,	the	Married	variable
is	 dropped	 from	 the	 model.	 The	 following	 R	 code	 provides	 the	 third	 and	 final	 model,
which	includes	only	the	Age	and	Churned_contacts	variables:
Churn_logistic3	<-	glm	(Churned˜Age	+	Churned_contacts,

					data=churn_input,	family=binomial(link=“logit”))

summary(Churn_logistic3)

Call:

glm(formula	=	Churned	˜	Age	+	Churned_contacts,

				family	=	binomial(link	=	“logit”),	data	=	churn_input)

Deviance	Residuals:

Min		1Q	Median		3Q		Max

-2.4599	-0.5214	-0.1960	-0.0736	3.3671

Coefficients:

					Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)		3.502716	0.128430	27.27	<2e-16	***

Age				-0.156551	0.004085	-38.32	<2e-16	***

Churned_contacts	0.381857	0.027297	13.99	<2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	‘	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

Null	deviance:	8387.3	on	7999	degrees	of	freedom

Residual	deviance:	5359.2	on	7997	degrees	of	freedom

AIC:	5365.2

Number	of	Fisher	Scoring	iterations:	6

For	 this	 final	 model,	 the	 entire	 summary	 output	 is	 provided.	 The	 output	 offers	 several
values	 that	 can	 be	 used	 to	 evaluate	 the	 fitted	model.	 It	 should	 be	 noted	 that	 the	model
parameter	estimates	correspond	to	the	values	provided	in	Equation	6.11	that	were	used	to
construct	Table	6.1.

Deviance	and	the	Pseudo-R2

In	logistic	regression,	deviance	is	defined	to	be	 ,	where	L	is	the	maximized	value	of
the	 likelihood	function	 that	was	used	 to	obtain	 the	parameter	estimates.	 In	 the	R	output,
two	 deviance	 values	 are	 provided.	 The	null	deviance	 is	 the	 value	where	 the	 likelihood
function	 is	 based	 only	 on	 the	 intercept	 term	 ().	The	 residual	deviance	 is	 the	 value
where	the	likelihood	function	is	based	on	the	parameters	 in	 the	specified	logistic	model,

shown	in	Equation	6.12.

6.12	

A	metric	analogous	to	R2	in	linear	regression	can	be	computed	as	shown	in	Equation	6.13.

6.13	

The	pseudo-R2	is	a	measure	of	how	well	the	fitted	model	explains	the	data	as	compared	to
the	default	model	of	no	predictor	variables	and	only	an	 intercept	 term.	A	 	value
near	1	indicates	a	good	fit	over	the	simple	null	model.

Deviance	and	the	Log-Likelihood	Ratio	Test

In	 the	 	 calculation,	 the	 –2	multipliers	 simply	 divide	 out.	 So,	 it	may	 appear	 that
including	 such	 a	 multiplier	 does	 not	 provide	 a	 benefit.	 However,	 the	 multiplier	 in	 the
deviance	definition	is	based	on	the	log-likelihood	test	statistic	shown	in	Equation	6.14:

6.14	

where	T	is	approximately	Chi-squared	distributed	 	with

The	previous	description	of	the	log-likelihood	test	statistic	applies	to	any	estimation	using
MLE.	As	can	be	seen	in	Equation	6.15,	in	the	logistic	regression	case,

6.15	

where	p	is	the	number	of	parameters	in	the	fitted	model.

So,	 in	 a	 hypothesis	 test,	 a	 large	 value	 of	 	 would	 indicate	 that	 the	 fitted	 model	 is
significantly	better	than	the	null	model	that	uses	only	the	intercept	term.

In	the	churn	example,	the	log-likelihood	ratio	statistic	would	be	this:

	 with	 2	 degrees	 of	 freedom	 and	 a	 corresponding	 p-value	 that	 is
essentially	zero.

So	far,	the	log-likelihood	ratio	test	discussion	has	focused	on	comparing	a	fitted	model	to
the	default	model	of	using	only	 the	 intercept.	However,	 the	 log-likelihood	 ratio	 test	 can
also	 compare	 one	 fitted	model	 to	 another.	 For	 example,	 consider	 the	 logistic	 regression
model	when	the	categorical	variable	Married	is	included	with	Age	and	Churned_contacts
in	the	list	of	input	variables.	The	partial	R	output	for	such	a	model	is	provided	here:
summary(Churn_logistic2)

Call:

glm(formula	=	Churned	˜	Age	+	Married	+	Churned_contacts,

family	=	binomial(link	=	“logit”),

data	=	churn_input)

Coefficients:

					Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)		3.472062	0.132107	26.282	<2e-16	***

Age				-0.156635	0.004088	-38.318	<2e-16	***

Married			0.066430	0.068299	0.973	0.331

Churned_contacts	0.381909	0.027302	13.988	<2e-16	***

–

Signif.	codes:	0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	’	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

Null	deviance:	8387.3	on	7999	degrees	of	freedom

Residual	deviance:	5358.3	on	7996	degrees	of	freedom

The	residual	deviances	from	each	model	can	be	used	to	perform	a	hypothesis	test	where	
	 against	 	 using	 the	 base	 model	 that	 includes	 the	 Age	 and

Churned_contacts	variables.	The	test	statistic	follows:

Using	R,	the	corresponding	p-value	is	calculated	as	follows:
pchisq(.9	,	1,	lower=FALSE)

[1]	0.3427817

Thus,	at	a	66%	or	higher	confidence	level,	the	null	hypothesis,	 	,	would	not	be
rejected.	 Thus,	 it	 seems	 reasonable	 to	 exclude	 the	 variable	 Married	 from	 the	 logistic
regression	model.

In	 general,	 this	 log-likelihood	 ratio	 test	 is	 particularly	 useful	 for	 forward	 and	 backward
step-wise	 methods	 to	 add	 variables	 to	 or	 remove	 them	 from	 the	 proposed	 logistic
regression	model.

Receiver	Operating	Characteristic	(ROC)	Curve

Logistic	regression	is	often	used	as	a	classifier	to	assign	class	labels	to	a	person,	item,	or
transaction	 based	 on	 the	 predicted	 probability	 provided	 by	 the	 model.	 In	 the	 Churn
example,	 a	 customer	 can	 be	 classified	with	 the	 label	 called	Churn	 if	 the	 logistic	model
predicts	 a	 high	 probability	 that	 the	 customer	 will	 churn.	 Otherwise,	 a	 Remain	 label	 is
assigned	 to	 the	 customer.	Commonly,	 0.5	 is	 used	 as	 the	 default	 probability	 threshold	 to
distinguish	 between	 any	 two	 class	 labels.	 However,	 any	 threshold	 value	 can	 be	 used
depending	on	the	preference	to	avoid	false	positives	(for	example,	to	predict	Churn	when
actually	the	customer	will	Remain)	or	false	negatives	(for	example,	to	predict	Remain	when
the	customer	will	actually	Churn).

In	general,	 for	 two	class	 labels,	C	and	¬C,	where	“¬C”	denotes	“not	C,”	 some	working
definitions	and	formulas	follow:

	
True	Positive:	predict	C,	when	actually	C
True	Negative:	predict	¬C,	when	actually	¬C
False	Positive:	predict	C,	when	actually	¬C
False	Negative:	predict	¬C,	when	actually	C

6.16	False	Positive	Rate	(FPR)	

6.17	True	Positive	:	Rate	(TPR)	

The	plot	of	the	True	Positive	Rate	(TPR)	against	the	False	Positive	Rate	(FPR)	is	known
as	 the	 Receiver	 Operating	 Characteristic	 (ROC)	 curve.	 Using	 the	 ROCR	 package,	 the
following	R	commands	generate	the	ROC	curve	for	the	Churn	example:
library(ROCR)

pred	=	predict(Churn_logistic3,	type=“response”)

predObj	=	prediction(pred,	churn_input$Churned)

rocObj	=	performance(predObj,	measure=“tpr”,	x.measure=“fpr”)

aucObj	=	performance(predObj,	measure=“auc”)

plot(rocObj,	main	=	paste(“Area	under	the	curve:”,

							round(aucObj@y.values[[1]]	,4)))

The	usefulness	of	this	plot	in	Figure	6.15	is	that	the	preferred	outcome	of	a	classifier	is	to
have	a	low	FPR	and	a	high	TPR.	So,	when	moving	from	left	to	right	on	the	FPR	axis,	a
good	model/	 classifier	 has	 the	 TPR	 rapidly	 approach	 values	 near	 1,	 with	 only	 a	 small
change	 in	FPR.	The	closer	 the	ROC	curve	 tracks	along	 the	vertical	axis	and	approaches
the	 upper-left	 hand	 of	 the	 plot,	 near	 the	 point	 (0,1),	 the	 better	 the	 model/classifier
performs.	Thus,	a	useful	metric	is	 to	compute	the	area	under	the	ROC	curve	(AUC).	By
examining	the	axes,	it	can	be	seen	that	the	theoretical	maximum	for	the	area	is	1.

Figure	6.15	ROC	curve	for	the	churn	example

To	illustrate	how	the	FPR	and	TPR	values	are	dependent	on	the	threshold	value	used	for
the	classifier,	the	plot	in	Figure	6.16	was	constructed	using	the	following	R	code:
#	extract	the	alpha(threshold),	FPR,	and	TPR	values	from	rocObj

alpha	<-	round(as.numeric(unlist(rocObj@alpha.values)),4)

fpr	<-	round(as.numeric(unlist(rocObj@x.values)),4)

tpr	<-	round(as.numeric(unlist(rocObj@y.values)),4)

#	adjust	margins	and	plot	TPR	and	FPR

par(mar	=	c(5,5,2,5))

plot(alpha,tpr,	xlab=“Threshold”,	xlim=c(0,1),

				ylab=“True	positive	rate”,	type=“l”)

par(new=“True”)

plot(alpha,fpr,	xlab=””,	ylab=””,	axes=F,	xlim=c(0,1),	type=“l”)

axis(side=4)

mtext(side=4,	line=3,	“False	positive	rate”)

text(0.18,0.18,“FPR”)

text(0.58,0.58,“TPR”)

Figure	6.16	The	effect	of	the	threshold	value	in	the	churn	example

For	a	threshold	value	of	0,	every	item	is	classified	as	a	positive	outcome.	Thus,	the	TPR
value	is	1.	However,	all	the	negatives	are	also	classified	as	a	positive,	and	the	FPR	value	is
also	1.	As	the	threshold	value	increases,	more	and	more	negative	class	labels	are	assigned.
Thus,	the	FPR	and	TPR	values	decrease.	When	the	threshold	reaches	1,	no	positive	labels
are	assigned,	and	the	FPR	and	TPR	values	are	both	0.

For	the	purposes	of	a	classifier,	a	commonly	used	threshold	value	is	0.5.	A	positive	label	is
assigned	for	any	probability	of	0.5	or	greater.	Otherwise,	a	negative	label	is	assigned.	As
the	 following	R	 code	 illustrates,	 in	 the	 analysis	 of	 the	Churn	 dataset,	 the	 0.5	 threshold
corresponds	to	a	TPR	value	of	0.56	and	a	FPR	value	of	0.08.
i	<-	which(round(alpha,2)	==	.5)

paste(“Threshold=”	,	(alpha[i])	,	”	TPR=”	,	tpr[i]	,	”	FPR=”	,	fpr[i])

[1]	“Threshold=	0.5004	TPR=	0.5571	FPR=	0.0793”

Thus,	56%	of	customers	who	will	churn	are	properly	classified	with	the	Churn	label,	and
8%	of	 the	 customers	who	will	 remain	 as	 customers	 are	 improperly	 labeled	 as	Churn.	 If
identifying	 only	 56%	 of	 the	 churners	 is	 not	 acceptable,	 then	 the	 threshold	 could	 be
lowered.	For	example,	suppose	it	was	decided	to	classify	with	a	Churn	label	any	customer
with	a	probability	of	churning	greater	than	0.15.	Then	the	following	R	code	indicates	that
the	corresponding	TPR	and	FPR	values	are	0.91	and	0.29,	respectively.	Thus,	91%	of	the
customers	who	will	churn	are	properly	identified,	but	at	a	cost	of	misclassifying	29%	of
the	customers	who	will	remain.
i	<-	which(round(alpha,2)	==	.15)

paste(“Threshold=”	,	(alpha[i])	,	”	TPR=”	,	tpr[i]	,	”	FPR=”	,	fpr[i])

[1]	“Threshold=	0.1543	TPR=	0.9116	FPR=	0.2869”

[2]	“Threshold=	0.1518	TPR=	0.9122	FPR=	0.2875”

[3]	“Threshold=	0.1479	TPR=	0.9145	FPR=	0.2942”

[4]	“Threshold=	0.1455	TPR=	0.9174	FPR=	0.2981”

The	 ROC	 curve	 is	 useful	 for	 evaluating	 other	 classifiers	 and	 will	 be	 utilized	 again	 in
Chapter	7,	“Advanced	Analytical	Theory	and	Methods:	Classification.”

Histogram	of	the	Probabilities

It	 can	 be	 useful	 to	 visualize	 the	 observed	 responses	 against	 the	 estimated	 probabilities
provided	 by	 the	 logistic	 regression.	 Figure	 6.17	 provides	 overlaying	 histograms	 for	 the
customers	who	churned	and	for	the	customers	who	remained	as	customers.	With	a	proper
fitting	 logistic	 model,	 the	 customers	 who	 remained	 tend	 to	 have	 a	 low	 probability	 of
churning.	 Conversely,	 the	 customers	 who	 churned	 have	 a	 high	 probability	 of	 churning
again.	This	histogram	plot	helps	visualize	the	number	of	items	to	be	properly	classified	or
misclassified.	 In	 the	Churn	 example,	 an	 ideal	 histogram	plot	would	 have	 the	 remaining
customers	grouped	at	the	left	side	of	the	plot,	the	customers	who	churned	at	the	right	side
of	the	plot,	and	no	overlap	of	these	two	groups.

Figure	6.17	Customer	counts	versus	estimated	churn	probability

6.3	Reasons	to	Choose	and	Cautions
Linear	regression	is	suitable	when	the	input	variables	are	continuous	or	discrete,	including
categorical	data	types,	but	the	outcome	variable	is	continuous.	If	the	outcome	variable	is
categorical,	logistic	regression	is	a	better	choice.

Both	 models	 assume	 a	 linear	 additive	 function	 of	 the	 input	 variables.	 If	 such	 an
assumption	does	not	hold	true,	both	regression	techniques	perform	poorly.	Furthermore,	in
linear	 regression,	 the	 assumption	 of	 normally	 distributed	 error	 terms	 with	 a	 constant
variance	is	 important	for	many	of	 the	statistical	 inferences	that	can	be	considered.	If	 the
various	 assumptions	 do	 not	 appear	 to	 hold,	 the	 appropriate	 transformations	 need	 to	 be
applied	to	the	data.

Although	a	collection	of	input	variables	may	be	a	good	predictor	for	the	outcome	variable,
the	 analyst	 should	 not	 infer	 that	 the	 input	 variables	 directly	 cause	 an	 outcome.	 For
example,	 it	may	be	 identified	 that	 those	 individuals	who	have	 regular	dentist	visits	may
have	 a	 reduced	 risk	 of	 heart	 attacks.	 However,	 simply	 sending	 someone	 to	 the	 dentist
almost	 certainly	 has	 no	 effect	 on	 that	 person’s	 chance	 of	 having	 a	 heart	 attack.	 It	 is
possible	 that	 regular	 dentist	 visits	 may	 indicate	 a	 person’s	 overall	 health	 and	 dietary
choices,	 which	 may	 have	 a	 more	 direct	 impact	 on	 a	 person’s	 health.	 This	 example
illustrates	the	commonly	known	expression,	“Correlation	does	not	imply	causation.”

Use	caution	when	applying	an	already	 fitted	model	 to	data	 that	 falls	outside	 the	dataset
used	to	train	the	model.	The	linear	relationship	in	a	regression	model	may	no	longer	hold
at	values	outside	the	training	dataset.	For	example,	if	income	was	an	input	variable	and	the
values	of	 income	 ranged	 from	$35,000	 to	$90,000,	 applying	 the	model	 to	 incomes	well
outside	those	incomes	could	result	in	inaccurate	estimates	and	predictions.

The	 income	 regression	 example	 in	 Section	 6.1.2	 mentioned	 the	 possibility	 of	 using
categorical	variables	to	represent	the	50	U.S.	states.	In	a	linear	regression	model,	the	state
of	 residence	 would	 provide	 a	 simple	 additive	 term	 to	 the	 income	 model	 but	 no	 other
impact	 on	 the	 coefficients	 of	 the	 other	 input	 variables,	 such	 as	 Age	 and	 Education.
However,	 if	 state	 does	 influence	 the	 other	 variables’	 impact	 to	 the	 income	 model,	 an
alternative	approach	would	be	to	build	50	separate	linear	regression	models:	one	model	for
each	 state.	 Such	 an	 approach	 is	 an	 example	 of	 the	 options	 and	 decisions	 that	 the	 data
scientist	must	be	willing	to	consider.

If	several	of	the	input	variables	are	highly	correlated	to	each	other,	the	condition	is	known
as	 multicollinearity.	Multicollinearity	 can	 often	 lead	 to	 coefficient	 estimates	 that	 are
relatively	large	in	absolute	magnitude	and	may	be	of	inappropriate	direction	(negative	or
positive	 sign).	 When	 possible,	 the	 majority	 of	 these	 correlated	 variables	 should	 be
removed	from	the	model	or	replaced	by	a	new	variable	that	is	a	function	of	the	correlated
variables.	For	example,	in	a	medical	application	of	regression,	height	and	weight	may	be
considered	important	input	variables,	but	these	variables	tend	to	be	correlated.	In	this	case,
it	may	 be	 useful	 to	 use	 the	Body	Mass	 Index	 (BMI),	which	 is	 a	 function	 of	 a	 person’s
height	and	weight.

However,	 in	 some	 cases	 it	 may	 be	 necessary	 to	 use	 the	 correlated	 variables.	 The	 next
section	provides	some	techniques	to	address	highly	correlated	variables.

6.4	Additional	Regression	Models
In	 the	 case	 of	 multicollinearity,	 it	 may	 make	 sense	 to	 place	 some	 restrictions	 on	 the
magnitudes	of	the	estimated	coefficients.	Ridge	regression,	which	applies	a	penalty	based
on	 the	 size	 of	 the	 coefficients,	 is	 one	 technique	 that	 can	 be	 applied.	 In	 fitting	 a	 linear
regression	model,	the	objective	is	to	find	the	values	of	the	coefficients	that	minimize	the
sum	of	the	residuals	squared.	In	ridge	regression,	a	penalty	term	proportional	to	the	sum	of
the	 squares	 of	 the	 coefficients	 is	 added	 to	 the	 sum	 of	 the	 residuals	 squared.	 Lasso
regression	is	a	related	modeling	technique	in	which	the	penalty	is	proportional	to	the	sum
of	the	absolute	values	of	the	coefficients.

Only	 binary	 outcome	 variables	 were	 examined	 in	 the	 use	 of	 logistic	 regression.	 If	 the
outcome	variable	can	assume	more	than	two	states,	multinomial	logistic	regression	can	be
used.

Summary
This	 chapter	 discussed	 the	 use	 of	 linear	 regression	 and	 logistic	 regression	 to	 model
historical	 data	 and	 to	 predict	 future	 outcomes.	 Using	 R,	 examples	 of	 each	 regression
technique	were	presented.	Several	diagnostics	to	evaluate	the	models	and	the	underlying
assumptions	were	covered.

Although	regression	analysis	is	relatively	straightforward	to	perform	using	many	existing
software	 packages,	 considerable	 care	 must	 be	 taken	 in	 performing	 and	 interpreting	 a
regression	analysis.	This	chapter	highlighted	that	in	a	regression	analysis,	the	data	scientist
needs	to	do	the	following:

	
Determine	the	best	input	variables	and	their	relationship	to	the	outcome	variable	.
Understand	the	underlying	assumptions	and	their	impact	on	the	modeling	results.
Transform	the	variables,	as	appropriate,	to	achieve	adherence	to	the	model
assumptions.
Decide	whether	building	one	comprehensive	model	is	the	best	choice	or	consider
building	many	models	on	partitions	of	the	data.

Exercises
	
1.	 In	the	Income	linear	regression	example,	consider	the	distribution	of	the	outcome

variable	Income.	Income	values	tend	to	be	highly	skewed	to	the	right	(distribution	of
value	has	a	large	tail	to	the	right).	Does	such	a	non-normally	distributed	outcome
variable	violate	the	general	assumption	of	a	linear	regression	model?	Provide
supporting	arguments.

2.	 In	the	use	of	a	categorical	variable	with	n	possible	values,	explain	the	following:
1.	 Why	only	n	–	1	binary	variables	are	necessary
2.	 Why	using	n	variables	would	be	problematic

3.	 In	the	example	of	using	Wyoming	as	the	reference	case,	discuss	the	effect	on	the
estimated	model	parameters,	including	the	intercept,	if	another	state	was	selected	as
the	reference	case.

4.	 Describe	how	logistic	regression	can	be	used	as	a	classifier.
5.	 Discuss	how	the	ROC	curve	can	be	used	to	determine	an	appropriate	threshold	value

for	a	classifier.
6.	 If	the	probability	of	an	event	occurring	is	0.4,	then

1.	 (a)What	is	the	odds	ratio?
2.	 What	is	the	log	odds	ratio?

7.	 If	 	is	an	estimated	coefficient	in	a	linear	regression	model,	what	is	the	effect	on
the	odds	ratio	for	every	one	unit	increase	in	the	value	of	

Chapter	7
Advanced	Analytical	Theory	and	Methods:	Classification

Key	Concepts
1.	 Classification	learning
2.	 Naïve	Bayes
3.	 Decision	tree
4.	 ROC	curve
5.	 Confusion	matrix

In	 addition	 to	 analytical	 methods	 such	 as	 clustering	 (Chapter	 4,	 “Advanced	 Analytical
Theory	 and	 Methods:	 Clustering”),	 association	 rule	 learning	 Chapter	 5,	 “Advanced
Analytical	 Theory	 and	 Methods:	 Association	 Rules”,	 and	 modeling	 techniques	 like
regression	 (Chapter	 6,	 “Advanced	 Analytical	 Theory	 and	 Methods:	 Regression”),
classification	is	another	fundamental	learning	method	that	appears	in	applications	related
to	data	mining.	In	classification	learning,	a	classifier	is	presented	with	a	set	of	examples
that	are	already	classified	and,	from	these	examples,	the	classifier	learns	to	assign	unseen
examples.	 In	 other	 words,	 the	 primary	 task	 performed	 by	 classifiers	 is	 to	 assign	 class
labels	 to	 new	 observations.	 Logistic	 regression	 from	 the	 previous	 chapter	 is	 one	 of	 the
popular	classification	methods.	The	set	of	labels	for	classifiers	is	predetermined,	unlike	in
clustering,	which	discovers	the	structure	without	a	training	set	and	allows	the	data	scientist
optionally	to	create	and	assign	labels	to	the	clusters.

Most	 classification	 methods	 are	 supervised,	 in	 that	 they	 start	 with	 a	 training	 set	 of
prelabeled	 observations	 to	 learn	 how	 likely	 the	 attributes	 of	 these	 observations	 may
contribute	 to	 the	 classification	 of	 future	 unlabeled	 observations.	 For	 example,	 existing
marketing,	 sales,	 and	 customer	 demographic	 data	 can	be	used	 to	 develop	 a	 classifier	 to
assign	a	“purchase”	or	“no	purchase”	label	to	potential	future	customers.

Classification	is	widely	used	for	prediction	purposes.	For	example,	by	building	a	classifier
on	 the	 transcripts	 of	 United	 States	 Congressional	 floor	 debates,	 it	 can	 be	 determined
whether	 the	 speeches	 represent	 support	 or	 opposition	 to	 proposed	 legislation	 [1].
Classification	can	help	health	care	professionals	diagnose	heart	disease	patients	[2].	Based
on	 an	 e-mail’s	 content,	 e-mail	 providers	 also	 use	 classification	 to	 decide	 whether	 the
incoming	e-mail	messages	are	spam	[3].

This	 chapter	mainly	 focuses	 on	 two	 fundamental	 classification	methods:	 decision	 trees
and	naïve	Bayes.

7.1	Decision	Trees
A	decision	tree	(also	called	prediction	tree)	uses	a	 tree	structure	 to	specify	sequences	of
decisions	and	consequences.	Given	input	 ,	the	goal	is	to	predict	a	response	or
output	 variable	 .	 Each	 member	 of	 the	 set	 	 is	 called	 an	 input	 variable.	 The
prediction	can	be	achieved	by	constructing	a	decision	tree	with	test	points	and	branches.
At	each	test	point,	a	decision	is	made	to	pick	a	specific	branch	and	traverse	down	the	tree.
Eventually,	 a	 final	 point	 is	 reached,	 and	 a	 prediction	 can	 be	made.	Each	 test	 point	 in	 a
decision	 tree	 involves	 testing	 a	 particular	 input	 variable	 (or	 attribute),	 and	 each	 branch
represents	the	decision	being	made.	Due	to	its	flexibility	and	easy	visualization,	decision
trees	are	commonly	deployed	in	data	mining	applications	for	classification	purposes.

The	 input	 values	 of	 a	 decision	 tree	 can	 be	 categorical	 or	 continuous.	 A	 decision	 tree
employs	 a	 structure	 of	 test	 points	 (called	 nodes)	 and	 branches,	 which	 represent	 the
decision	being	made.	A	node	without	further	branches	is	called	a	leaf	node.	The	leaf	nodes
return	 class	 labels	 and,	 in	 some	 implementations,	 they	 return	 the	 probability	 scores.	 A
decision	tree	can	be	converted	into	a	set	of	decision	rules.	In	the	following	example	rule,
income	and	mortgage_amount	are	input	variables,	and	the	response	is	the	output	variable
default	with	a	probability	score.
IF	income	<	$50,000	AND	mortgage_amount	>	$100K

THEN	default	=	True	WITH	PROBABILITY	75%

Decision	trees	have	two	varieties:	classification	trees	and	regression	trees.	Classification
trees	usually	apply	to	output	variables	that	are	categorical—often	binary—in	nature,	such
as	yes	or	no,	purchase	or	not	purchase,	and	so	on.	Regression	trees,	on	the	other	hand,	can
apply	to	output	variables	that	are	numeric	or	continuous,	such	as	the	predicted	price	of	a
consumer	good	or	the	likelihood	a	subscription	will	be	purchased.

Decision	trees	can	be	applied	to	a	variety	of	situations.	They	can	be	easily	represented	in	a
visual	way,	and	 the	corresponding	decision	 rules	are	quite	straightforward.	Additionally,
because	 the	 result	 is	 a	 series	 of	 logical	 if-then	 statements,	 there	 is	 no	 underlying
assumption	 of	 a	 linear	 (or	 nonlinear)	 relationship	 between	 the	 input	 variables	 and	 the
response	variable.

7.1.1	Overview	of	a	Decision	Tree
Figure	7.1	shows	an	example	of	using	a	decision	 tree	 to	predict	whether	customers	will
buy	a	product.	The	term	branch	refers	to	the	outcome	of	a	decision	and	is	visualized	as	a
line	connecting	two	nodes.	If	a	decision	is	numerical,	the	“greater	than”	branch	is	usually
placed	 on	 the	 right,	 and	 the	 “less	 than”	 branch	 is	 placed	 on	 the	 left.	Depending	 on	 the
nature	of	the	variable,	one	of	the	branches	may	need	to	include	an	“equal	to”	component.

Figure	7.1	Example	of	a	decision	tree

Internal	 nodes	 are	 the	 decision	 or	 test	 points.	 Each	 internal	 node	 refers	 to	 an	 input
variable	 or	 an	 attribute.	 The	 top	 internal	 node	 is	 called	 the	 root.	 The	 decision	 tree	 in
Figure	7.1	is	a	binary	tree	in	that	each	internal	node	has	no	more	than	two	branches.	The
branching	of	a	node	is	referred	to	as	a	split.

Sometimes	decision	trees	may	have	more	than	two	branches	stemming	from	a	node.	For
example,	if	an	input	variable	Weather	is	categorical	and	has	three	choices—Sunny,	Rainy,
and	Snowy—the	corresponding	node	Weather	in	the	decision	tree	may	have	three	branches
labeled	as	Sunny,	Rainy,	and	Snowy,	respectively.

The	depth	of	a	node	is	the	minimum	number	of	steps	required	to	reach	the	node	from	the
root.	In	Figure	7.1	for	example,	nodes	Income	and	Age	have	a	depth	of	one,	and	the	four
nodes	on	the	bottom	of	the	tree	have	a	depth	of	two.

Leaf	nodes	are	at	the	end	of	the	last	branches	on	the	tree.	They	represent	class	labels—the
outcome	of	all	the	prior	decisions.	The	path	from	the	root	to	a	leaf	node	contains	a	series
of	decisions	made	at	various	internal	nodes.

In	Figure	7.1,	the	root	node	splits	into	two	branches	with	a	Gender	test.	The	right	branch
contains	 all	 those	 records	 with	 the	 variable	 Gender	 equal	 to	 Male,	 and	 the	 left	 branch
contains	all	those	records	with	the	variable	Gender	equal	to	Female	 to	create	the	depth	1
internal	nodes.	Each	internal	node	effectively	acts	as	the	root	of	a	subtree,	and	a	best	test
for	each	node	is	determined	independently	of	the	other	internal	nodes.	The	left-hand	side
(LHS)	internal	node	splits	on	a	question	based	on	the	Income	variable	to	create	leaf	nodes
at	depth	2,	whereas	the	right-hand	side	(RHS)	splits	on	a	question	on	the	Age	variable.

The	 decision	 tree	 in	 Figure	 7.1	 shows	 that	 females	 with	 income	 less	 than	 or	 equal	 to
$45,000	and	males	40	years	old	or	younger	are	classified	as	people	who	would	purchase
the	product.	In	traversing	this	tree,	age	does	not	matter	for	females,	and	income	does	not
matter	for	males.

Decision	 trees	 are	 widely	 used	 in	 practice.	 For	 example,	 to	 classify	 animals,	 questions
(like	cold-blooded	or	warm-blooded,	mammal	or	not	mammal)	are	answered	to	arrive	at	a
certain	 classification.	 Another	 example	 is	 a	 checklist	 of	 symptoms	 during	 a	 doctor’s
evaluation	of	a	patient.	The	artificial	intelligence	engine	of	a	video	game	commonly	uses
decision	 trees	 to	 control	 the	 autonomous	 actions	 of	 a	 character	 in	 response	 to	 various
scenarios.	Retailers	can	use	decision	trees	to	segment	customers	or	predict	response	rates
to	marketing	and	promotions.	Financial	institutions	can	use	decision	trees	to	help	decide	if

a	loan	application	should	be	approved	or	denied.	In	the	case	of	loan	approval,	computers
can	use	the	logical	if-then	statements	to	predict	whether	the	customer	will	default	on	the
loan.	For	customers	with	a	clear	(strong)	outcome,	no	human	interaction	is	required;	for
observations	that	may	not	generate	a	clear	response,	a	human	is	needed	for	the	decision.

By	limiting	the	number	of	splits,	a	short	tree	can	be	created.	Short	trees	are	often	used	as
components	(also	called	weak	learners	or	base	learners)	in	ensemble	methods.	Ensemble
methods	use	multiple	predictive	models	to	vote,	and	decisions	can	be	made	based	on	the
combination	 of	 the	 votes.	 Some	 popular	 ensemble	 methods	 include	 random	 forest	 [4],
bagging,	and	boosting	[5].	Section	7.4	discusses	these	ensemble	methods	more.

The	simplest	short	tree	is	called	a	decision	stump,	which	is	a	decision	tree	with	the	root
immediately	connected	to	 the	 leaf	nodes.	A	decision	stump	makes	a	prediction	based	on
the	value	of	just	a	single	input	variable.	Figure	7.2	shows	a	decision	stump	to	classify	two
species	of	an	iris	flower	based	on	the	petal	width.	The	figure	shows	that,	if	the	petal	width
is	smaller	than	1.75	centimeters,	it’s	Iris	versicolor;	otherwise,	it’s	Iris	virginica.

Figure	7.2	Example	of	a	decision	stump

To	illustrate	how	a	decision	tree	works,	consider	the	case	of	a	bank	that	wants	to	market	its
term	deposit	products	(such	as	Certificates	of	Deposit)	to	the	appropriate	customers.	Given
the	 demographics	 of	 clients	 and	 their	 reactions	 to	 previous	 campaign	 phone	 calls,	 the
bank’s	goal	is	to	predict	which	clients	would	subscribe	to	a	term	deposit.	The	dataset	used
here	 is	 based	 on	 the	 original	 dataset	 collected	 from	 a	 Portuguese	 bank	 on	 directed
marketing	campaigns	as	stated	in	the	work	by	Moro	et	al.	[6].	Figure	7.3	shows	a	subset	of
the	 modified	 bank	 marketing	 dataset.	 This	 dataset	 includes	 2,000	 instances	 randomly
drawn	from	the	original	dataset,	and	each	instance	corresponds	to	a	customer.	To	make	the
example	 simple,	 the	 subset	 only	 keeps	 the	 following	 categorical	 variables:	 (1)	 job,	 (2)
marital	 status,	 (3)	 education	 level,	 (4)	 if	 the	 credit	 is	 in	 default,	 (5)	 if	 there	 is	 a
housing	 loan,	 (6)	 if	 the	 customer	 currently	 has	 a	 personal	 loan,	 (7)	 contact	 type,	 (8)
result	of	the	previous	marketing	campaign	contact	(poutcome),	and	finally	(9)	if	the	client
actually	subscribed	to	the	term	deposit.	Attributes	(1)	through	(8)	are	input	variables,	and
(9)	 is	 considered	 the	 outcome.	 The	 outcome	 subscribed	 is	 either	 yes	 (meaning	 the
customer	 will	 subscribe	 to	 the	 term	 deposit)	 or	 no	 (meaning	 the	 customer	 won’t
subscribe).	All	the	variables	listed	earlier	are	categorical.

Figure	7.3	A	subset	of	the	bank	marketing	dataset

A	summary	of	the	dataset	shows	the	following	statistics.	For	ease	of	display,	the	summary
only	includes	the	top	six	most	frequently	occurring	values	for	each	attribute.	The	rest	are
displayed	as	(Other).
			job			marital			education	default

blue-collar:435	divorced:	228	primary	:	335	no	:1961

management	:423	married	:1201	secondary:1010	yes:	39

technician	:339	single	:	571	tertiary	:	564

admin.		:235					unknown	:	91

services	:168

retired	:	92

(Other)	:308

housing		loan			contact			month		poutcome

no	:	916	no	:1717	cellular	:1287	may	:581	failure:	210

yes:1084	yes:	283	telephone:	136	jul	:340	other	:	79

						unknown	:	577	aug	:278	success:	58

										jun	:232	unknown:1653

										nov	:183

										apr	:118

										(Other):268

subscribed

no	:1789

yes:	211

Attribute	job	includes	the	following	values.
		admin.	blue-collar	entrepreneur		housemaid

			235			435			70			63

management		retired	self-employed		services

			423			92			69			168

		student	technician	unemployed		unknown

			36			339			60			10

Figure	7.4	shows	a	decision	tree	built	over	the	bank	marketing	dataset.	The	root	of	the	tree
shows	that	the	overall	fraction	of	the	clients	who	have	not	subscribed	to	the	term	deposit	is
1,789	out	of	the	total	population	of	2,000.

Figure	7.4	Using	a	decision	tree	to	predict	if	a	client	will	subscribe	to	a	term	deposit

At	each	split,	 the	decision	 tree	algorithm	picks	 the	most	 informative	attribute	out	of	 the
remaining	 attributes.	 The	 extent	 to	 which	 an	 attribute	 is	 informative	 is	 determined	 by
measures	such	as	entropy	and	information	gain,	as	detailed	in	Section	7.1.2.

At	the	first	split,	the	decision	tree	algorithm	chooses	the	poutcome	attribute.	There	are	two
nodes	at	depth=1.	The	left	node	is	a	leaf	node	representing	a	group	for	which	the	outcome
of	 the	 previous	marketing	 campaign	 contact	 is	 a	 failure,	 other,	 or	 unknown.	 For	 this
group,	1,763	out	of	1,942	clients	have	not	subscribed	to	the	term	deposit.

The	right	node	represents	the	rest	of	the	population,	for	which	the	outcome	of	the	previous
marketing	campaign	contact	 is	a	success.	For	 the	population	of	 this	node,	32	out	of	58
clients	have	subscribed	to	the	term	deposit.

This	 node	 further	 splits	 into	 two	 nodes	 based	 on	 the	 education	 level.	 If	 the	 education
level	is	either	secondary	or	tertiary,	then	26	out	of	50	of	the	clients	have	not	subscribed
to	the	term	deposit.	If	the	education	level	is	primary	or	unknown,	then	8	out	of	8	times	the

clients	have	subscribed.

The	left	node	at	depth	2	further	splits	based	on	attribute	job.	 If	 the	occupation	is	admin,
blue	collar,	management,	retired,	services,	or	technician,	 then	26	out	of	45	clients
have	not	subscribed.	If	the	occupation	is	self-employed,	student,	or	unemployed,	then	5
out	of	5	times	the	clients	have	subscribed.

7.1.2	The	General	Algorithm
In	general,	the	objective	of	a	decision	tree	algorithm	is	to	construct	a	tree	T	from	a	training
set	S.	If	all	the	records	in	S	belong	to	some	class	C	(subscribed	=	yes,	for	example),	or	if	S
is	 sufficiently	 pure	 (greater	 than	 a	 preset	 threshold),	 then	 that	 node	 is	 considered	 a	 leaf
node	 and	 assigned	 the	 label	C.	The	purity	 of	 a	 node	 is	 defined	 as	 its	 probability	 of	 the

corresponding	 class.	 For	 example,	 in	 Figure	 7.4,	 the	 root	 ;

therefore,	the	root	is	only	10.55%	pure	on	the	 	class.	Conversely,	it	is	89.45%	pure	on	the	
	class.

In	contrast,	if	not	all	the	records	in	S	belong	to	class	C	or	if	S	is	not	sufficiently	pure,	the
algorithm	selects	the	next	most	informative	attribute	A	(duration,	marital,	and	so	on)	and
partitions	 S	 according	 to	 A‘s	 values.	 The	 algorithm	 constructs	 subtrees	 ,	 	 …	 for	 the
subsets	of	S	recursively	until	one	of	the	following	criteria	is	met:

	
All	the	leaf	nodes	in	the	tree	satisfy	the	minimum	purity	threshold.
The	tree	cannot	be	further	split	with	the	preset	minimum	purity	threshold.
Any	other	stopping	criterion	is	satisfied	(such	as	the	maximum	depth	of	the	tree).

The	first	step	in	constructing	a	decision	tree	is	to	choose	the	most	informative	attribute.	A
common	way	to	identify	the	most	informative	attribute	is	 to	use	entropy-based	methods,
which	are	used	by	decision	tree	learning	algorithms	such	as	ID3	(or	Iterative	Dichotomiser
3)	[7]	and	C4.5	[8].	The	entropy	methods	select	 the	most	 informative	attribute	based	on
two	basic	measures:

	
Entropy,	which	measures	the	impurity	of	an	attribute
Information	gain,	which	measures	the	purity	of	an	attribute

Given	a	 class	 	 and	 its	 label	 ,	 let	 	 be	 the	probability	of	 .	 	 the	 entropy	of	 ,	 is
defined	as	shown	in	Equation	7.1.

7.1	

Equation	 7.1	 shows	 that	 entropy	 	 becomes	 0	 when	 all	 	 is	 0	 or	 1.	 For	 a	 binary
classification	(true	or	false),	 	is	zero	if	 	the	probability	of	each	label	 	is	either	zero
or	one.	On	the	other	hand,	 	achieves	the	maximum	entropy	when	all	the	class	labels	are
equally	probable.	For	a	binary	classification,	 	 if	 the	probability	of	all	class	 labels	 is
50/50.	The	maximum	entropy	increases	as	the	number	of	possible	outcomes	increases.

As	 an	 example	 of	 a	 binary	 random	 variable,	 consider	 tossing	 a	 coin	 with	 known,	 not
necessarily	 fair,	 probabilities	 of	 coming	 up	 heads	 or	 tails.	 The	 corresponding	 entropy
graph	is	shown	in	Figure	7.5.	Let	 	represent	heads	and	 	represent	tails.	The	entropy
of	the	unknown	result	of	the	next	toss	is	maximized	when	the	coin	is	fair.	That	is,	when
heads	 and	 tails	 have	 equal	 probability	 ,	 entropy	

.	On	the	other	hand,	if	the	coin	is	not	fair,	the	probabilities	of
heads	 and	 tails	would	 not	 be	 equal	 and	 there	would	 be	 less	 uncertainty.	As	 an	 extreme
case,	when	the	probability	of	tossing	a	head	is	equal	to	0	or	1,	the	entropy	is	minimized	to
0.	Therefore,	the	entropy	for	a	completely	pure	variable	is	0	and	is	1	for	a	set	with	equal
occurrences	for	both	the	classes	(head	and	tail,	or	yes	and	no).

Figure	7.5	Entropy	of	coin	flips,	where	X=1	represents	heads

For	the	bank	marketing	scenario	previously	presented,	the	output	variable	is	subscribed.
The	 base	 entropy	 is	 defined	 as	 entropy	 of	 the	 output	 variable,	 that	 is	 .	 As	 seen
previously,	 	and	 .	According	to	Equation	7.1,	 the
base	entropy	 .

The	next	step	is	to	identify	the	conditional	entropy	for	each	attribute.	Given	an	attribute	 ,
its	value	 ,	its	outcome	 ,	and	its	value	 ,	conditional	entropy	 	is	the	remaining	entropy
of	 	given	 ,	formally	defined	as	shown	in	Equation	7.2.

7.2	

Consider	 the	 banking	 marketing	 scenario,	 if	 the	 attribute	 contact	 is	 chosen,	 	 =
{cellular,	telephone,	unknown}.	The	conditional	entropy	of	contact	considers	all	three
values.

Table	7.1	lists	the	probabilities	related	to	the	contact	attribute.	The	top	row	of	the	table
displays	 the	 probabilities	 of	 each	 value	 of	 the	 attribute.	 The	 next	 two	 rows	 contain	 the
probabilities	of	the	class	labels	conditioned	on	the	contact.

Table	7.1	Conditional	Entropy	Example

Cellular Telephone Unknown
P(contact) 0.6435 0.0680 0.2885

P(subscribed=yes	|	contact) 0.1399 0.0809 0.0347
P(subscribed=no	|	contact) 0.8601 0.9192 0.9653

The	conditional	entropy	of	the	contact	attribute	is	computed	as	shown	here.

Computation	 inside	 the	parentheses	 is	 on	 the	 entropy	of	 the	 class	 labels	within	 a	 single
contact	value.	Note	that	the	conditional	entropy	is	always	less	than	or	equal	to	the	base
entropy—that	 is,	 .	 The	 conditional	 entropy	 is	 smaller	 than	 the	 base
entropy	when	 the	 attribute	 and	 the	 outcome	 are	 correlated.	 In	 the	worst	 case,	when	 the
attribute	is	uncorrelated	with	the	outcome,	the	conditional	entropy	equals	the	base	entropy.

The	 information	 gain	 of	 an	 attribute	 A	 is	 defined	 as	 the	 difference	 between	 the	 base
entropy	and	the	conditional	entropy	of	the	attribute,	as	shown	in	Equation	7.3.

7.3	

In	the	bank	marketing	example,	the	information	gain	of	the	contact	attribute	is	shown	in
Equation	7.4.

7.4	

Information	gain	compares	the	degree	of	purity	of	the	parent	node	before	a	split	with	the
degree	of	purity	of	the	child	node	after	a	split.	At	each	split,	an	attribute	with	the	greatest
information	gain	 is	considered	 the	most	 informative	attribute.	 Information	gain	 indicates
the	purity	of	an	attribute.

The	result	of	information	gain	for	all	the	input	variables	is	shown	in	Table	7.2.	Attribute
poutcome	has	the	most	information	gain	and	is	the	most	informative	variable.	Therefore,
poutcome	 is	 chosen	 for	 the	 first	 split	 of	 the	 decision	 tree,	 as	 shown	 in	 Figure	 7.4.	 The
values	of	information	gain	in	Table	7.2	are	small	in	magnitude,	but	the	relative	difference
matters.	 The	 algorithm	 splits	 on	 the	 attribute	 with	 the	 largest	 information	 gain	 at	 each
round.

Table	7.2	Calculating	Information	Gain	of	Input	Variables	for	the	First	Split

Attribute Information	Gain
poutcome 0.0289
contact 0.0201
housing 0.0133

job 0.0101
education 0.0034
marital 0.0018
loan 0.0010

default 0.0005

Detecting	Significant	Splits
Quite	 often	 it	 is	 necessary	 to	 measure	 the	 significance	 of	 a	 split	 in	 a	 decision	 tree,
especially	when	the	information	gain	is	small,	like	in	Table	7.2.

Let	 	and	 	be	the	number	of	class	A	and	class	B	in	the	parent	node.	Let	 	represent	the
number	of	class	A	going	to	the	left	child	node,	 	represent	the	number	of	class	B	going	to
the	left	child	node,	 	represent	the	number	of	class	B	going	to	the	right	child	node,	and	
represent	the	number	of	class	B	going	to	the	right	child	node.

Let	 	and	 	denote	the	proportion	of	data	going	to	the	left	and	right	node,	respectively.

The	following	measure	computes	 the	significance	of	a	split.	 In	other	words,	 it	measures
how	much	the	split	deviates	from	what	would	be	expected	in	the	random	data.

where

If	K	is	small,	 the	 information	gain	from	the	split	 is	not	significant.	 If	K	is	big,	 it	would
suggest	the	information	gain	from	the	split	is	significant.

Take	the	first	split	of	 the	decision	tree	 in	Figure	7.4	on	variable	poutcome	 for	example.	
,	 ,	 ,	 ,	 ,	 .

Following	are	the	proportions	of	data	going	to	the	left	and	right	node.

	and	 .

The	 ,	 ,	 ,	and	 	represent	the	number	of	each	class	going	to	the	left	or	right	node	if
the	data	is	random.	Their	values	follow.

,	 ,	 	and	

Therefore,	 ,	which	suggests	the	split	on	poutcome	is	significant.

After	each	split,	the	algorithm	looks	at	all	the	records	at	a	leaf	node,	and	the	information

gain	of	each	candidate	attribute	is	calculated	again	over	these	records.	The	next	split	is	on
the	attribute	with	the	highest	information	gain.	A	record	can	only	belong	to	one	leaf	node
after	all	the	splits,	but	depending	on	the	implementation,	an	attribute	may	appear	in	more
than	 one	 split	 of	 the	 tree.	This	 process	 of	 partitioning	 the	 records	 and	 finding	 the	most
informative	attribute	 is	 repeated	until	 the	nodes	are	pure	enough,	or	 there	 is	 insufficient
information	gain	by	splitting	on	more	attributes.	Alternatively,	one	can	stop	the	growth	of
the	 tree	 when	 all	 the	 nodes	 at	 a	 leaf	 node	 belong	 to	 a	 certain	 class	 (for	 example,
subscribed	=	yes)	or	all	the	records	have	identical	attribute	values.

In	 the	 previous	 bank	 marketing	 example,	 to	 keep	 it	 simple,	 the	 dataset	 only	 includes
categorical	 variables.	 Assume	 the	 dataset	 now	 includes	 a	 continuous	 variable	 called
duration	–representing	the	number	of	seconds	the	last	phone	conversation	with	the	bank
lasted	 as	 part	 of	 the	 previous	 marketing	 campaign.	 A	 continuous	 variable	 needs	 to	 be
divided	 into	 a	 disjoint	 set	 of	 regions	 with	 the	 highest	 information	 gain.	 A	 brute-force
method	 is	 to	 consider	 every	 value	 of	 the	 continuous	 variable	 in	 the	 training	 data	 as	 a
candidate	split	position.	This	brute-force	method	is	computationally	inefficient.	To	reduce
the	complexity,	the	training	records	can	be	sorted	based	on	the	duration,	and	the	candidate
splits	 can	be	 identified	by	 taking	 the	midpoints	between	 two	adjacent	 sorted	values.	An
examples	 is	 if	 the	 duration	 consists	 of	 sorted	 values	 {140,	 160,	 180,	 200}	 and	 the
candidate	splits	are	150,	170,	and	190.

Figure	7.6	 shows	what	 the	 decision	 tree	may	 look	 like	when	 considering	 the	 duration
attribute.	 The	 root	 splits	 into	 two	 partitions:	 those	 clients	with	 	 seconds,	 and
those	with	 	 seconds.	Note	 that	 for	 aesthetic	 purposes,	 labels	 for	 the	 job	 and
contact	attributes	in	the	figure	are	abbreviated.

Figure	7.6	Decision	tree	with	attribute	duration

With	the	decision	tree	in	Figure	7.6,	it	becomes	trivial	to	predict	if	a	new	client	is	going	to
subscribe	 to	 the	 term	 deposit.	 For	 example,	 given	 the	 record	 of	 a	 new	 client	 shown	 in
Table	7.3,	the	prediction	is	that	this	client	will	subscribe	to	the	term	deposit.	The	traversed
paths	in	the	decision	tree	are	as	follows.

	
duration	≥	456
contact	=	cll	(cellular)
duration	<	700
job	=	ent	(entrepreneur),	rtr	(retired)

Table	7.3	Record	of	a	New	Client

Job Marital Education Default Housing Loan Contact Duration Poutcome
retired married secondary no yes No cellular 598 unknown

7.1.3	Decision	Tree	Algorithms
Multiple	 algorithms	 exist	 to	 implement	 decision	 trees,	 and	 the	 methods	 of	 tree
construction	 vary	 with	 different	 algorithms.	 Some	 popular	 algorithms	 include	 ID3	 [7],
C4.5[8],	and	CART	[9].

ID3	Algorithm

ID3	(or	Iterative	Dichotomiser	3)	[7]	is	one	of	the	first	decision	tree	algorithms,	and	it	was
developed	by	John	Ross	Quinlan.	Let	A	 be	 a	 set	of	 categorical	 input	variables,	P	 be	 the
output	 variable	 (or	 the	 predicted	 class),	 and	T	 be	 the	 training	 set.	The	 ID3	 algorithm	 is
shown	here.
1	ID3	(A,	P,	T)

2	if	

3		return	

4	if	all	records	in	T	have	the	same	value	for	P

5		return	a	single	node	with	that	value

6	if	

7		return	a	single	node	with	the	most	frequent	value	of	P	in	T

8	Compute	information	gain	for	each	attribute	in	A	relative	to	T

9	Pick	attribute	D	with	the	largest	gain

10	Let	{ }	be	the	values	of	attribute	D

11	Partition	T	into	{ }	according	to	the	values	of	D

12	return	a	tree	with	root	D	and	branches	labeled	

			going	respectively	to	trees	ID3(A-{D},	P,),

			ID3(A-{D},	P,),	…	ID3(A-{D},	P,)

C4.5

The	 C4.5	 algorithm	 [8]	 introduces	 a	 number	 of	 improvements	 over	 the	 original	 ID3
algorithm.	 The	 C4.5	 algorithm	 can	 handle	missing	 data.	 If	 the	 training	 records	 contain
unknown	attribute	values,	the	C4.5	evaluates	the	gain	for	an	attribute	by	considering	only
the	records	where	the	attribute	is	defined.

Both	categorical	and	continuous	attributes	are	supported	by	C4.5.	Values	of	a	continuous
variable	 are	 sorted	 and	 partitioned.	 For	 the	 corresponding	 records	 of	 each	 partition,	 the
gain	is	calculated,	and	the	partition	that	maximizes	the	gain	is	chosen	for	the	next	split.

The	ID3	algorithm	may	construct	a	deep	and	complex	tree,	which	would	cause	overfitting
(Section	7.1.4).	The	C4.5	algorithm	addresses	 the	overfitting	problem	in	ID3	by	using	a
bottom-up	 technique	 called	 pruning	 to	 simplify	 the	 tree	 by	 removing	 the	 least	 visited
nodes	and	branches.

CART

CART	(or	Classification	And	Regression	Trees)	[9]	is	often	used	as	a	generic	acronym	for
the	decision	tree,	although	it	is	a	specific	implementation.

Similar	 to	 C4.5,	 CART	 can	 handle	 continuous	 attributes.	 Whereas	 C4.5	 uses	 entropy-
based	criteria	to	rank	tests,	CART	uses	the	Gini	diversity	index	defined	in	Equation	7.5.

7.5	

Whereas	 C4.5	 employs	 stopping	 rules,	 CART	 constructs	 a	 sequence	 of	 subtrees,	 uses
cross-validation	to	estimate	the	misclassification	cost	of	each	subtree,	and	chooses	the	one
with	the	lowest	cost.

7.1.4	Evaluating	a	Decision	Tree
Decision	trees	use	greedy	algorithms,	in	that	they	always	choose	the	option	that	seems	the
best	available	at	that	moment.	At	each	step,	the	algorithm	selects	which	attribute	to	use	for
splitting	 the	 remaining	 records.	 This	 selection	 may	 not	 be	 the	 best	 overall,	 but	 it	 is
guaranteed	 to	 be	 the	 best	 at	 that	 step.	 This	 characteristic	 reinforces	 the	 efficiency	 of
decision	trees.	However,	once	a	bad	split	is	taken,	it	is	propagated	through	the	rest	of	the
tree.	 To	 address	 this	 problem,	 an	 ensemble	 technique	 (such	 as	 random	 forest)	 may
randomize	the	splitting	or	even	randomize	data	and	come	up	with	a	multiple	tree	structure.
These	 trees	 then	vote	 for	 each	class,	 and	 the	 class	with	 the	most	votes	 is	 chosen	as	 the
predicted	class.

There	are	a	few	ways	to	evaluate	a	decision	tree.	First,	evaluate	whether	the	splits	of	the
tree	 make	 sense.	 Conduct	 sanity	 checks	 by	 validating	 the	 decision	 rules	 with	 domain
experts,	and	determine	if	the	decision	rules	are	sound.

Next,	look	at	the	depth	and	nodes	of	the	tree.	Having	too	many	layers	and	obtaining	nodes
with	few	members	might	be	signs	of	overfitting.	In	overfitting,	the	model	fits	the	training
set	well,	but	it	performs	poorly	on	the	new	samples	in	the	testing	set.	Figure	7.7	illustrates
the	performance	of	an	overfit	model.	The	x-axis	represents	the	amount	of	data,	and	the	y-
axis	represents	the	errors.	The	blue	curve	is	the	training	set,	and	the	red	curve	is	the	testing
set.	The	left	side	of	the	gray	vertical	line	shows	that	the	model	predicts	well	on	the	testing
set.	But	 on	 the	 right	 side	 of	 the	 gray	 line,	 the	model	 performs	worse	 and	worse	 on	 the
testing	set	as	more	and	more	unseen	data	is	introduced.

Figure	7.7	An	overfit	model	describes	the	training	data	well	but	predicts	poorly	on	unseen
data

For	decision	tree	learning,	overfitting	can	be	caused	by	either	the	lack	of	training	data	or
the	 biased	 data	 in	 the	 training	 set.	 Two	 approaches	 [10]	 can	 help	 avoid	 overfitting	 in
decision	tree	learning.

	
Stop	growing	the	tree	early	before	it	reaches	the	point	where	all	the	training	data	is
perfectly	classified.
Grow	the	full	tree,	and	then	post-prune	the	tree	with	methods	such	as	reduced-error
pruning	and	rule-based	post	pruning.

Last,	 many	 standard	 diagnostics	 tools	 that	 apply	 to	 classifiers	 can	 help	 evaluate
overfitting.	These	tools	are	further	discussed	in	Section	7.3.

Decision	 trees	 are	 computationally	 inexpensive,	 and	 it	 is	 easy	 to	 classify	 the	 data.	 The
outputs	 are	 easy	 to	 interpret	 as	 a	 fixed	 sequence	 of	 simple	 tests.	 Many	 decision	 tree
algorithms	are	able	to	show	the	importance	of	each	input	variable.	Basic	measures,	such	as
information	gain,	are	provided	by	most	statistical	software	packages.

Decision	trees	are	able	to	handle	both	numerical	and	categorical	attributes	and	are	robust
with	 redundant	 or	 correlated	 variables.	 Decision	 trees	 can	 handle	 categorical	 attributes
with	many	distinct	values,	 such	as	 country	codes	 for	 telephone	numbers.	Decision	 trees
can	also	handle	variables	that	have	a	nonlinear	effect	on	the	outcome,	so	they	work	better
than	 linear	 models	 (for	 example,	 linear	 regression	 and	 logistic	 regression)	 for	 highly
nonlinear	problems.	Decision	 trees	naturally	handle	variable	 interactions.	Every	node	 in
the	tree	depends	on	the	preceding	nodes	in	the	tree.

In	 a	 decision	 tree,	 the	 decision	 regions	 are	 rectangular	 surfaces.	 Figure	 7.8	 shows	 an
example	of	five	rectangular	decision	surfaces	(A,	B,	C,	D,	and	E)	defined	by	four	values—

—of	 two	attributes	 (and).	The	corresponding	decision	 tree	 is	on	 the	 right
side	of	the	figure.	A	decision	surface	corresponds	to	a	leaf	node	of	the	tree,	and	it	can	be
reached	by	traversing	from	the	root	of	the	tree	following	by	a	series	of	decisions	according
to	the	value	of	an	attribute.	The	decision	surface	can	only	be	axis-aligned	for	the	decision
tree.

Figure	7.8	Decision	surfaces	can	only	be	axis-aligned

The	 structure	 of	 a	 decision	 tree	 is	 sensitive	 to	 small	 variations	 in	 the	 training	 data.
Although	the	dataset	 is	 the	same,	constructing	 two	decision	 trees	based	on	 two	different
subsets	 may	 result	 in	 very	 different	 trees.	 If	 a	 tree	 is	 too	 deep,	 overfitting	 may	 occur,
because	each	split	reduces	the	training	data	for	subsequent	splits.

Decision	trees	are	not	a	good	choice	if	the	dataset	contains	many	irrelevant	variables.	This
is	different	 from	 the	notion	 that	 they	are	 robust	with	 redundant	variables	 and	correlated
variables.	If	the	dataset	contains	redundant	variables,	the	resulting	decision	tree	ignores	all
but	 one	 of	 these	 variables	 because	 the	 algorithm	 cannot	 detect	 information	 gain	 by
including	more	redundant	variables.	On	 the	other	hand,	 if	 the	dataset	contains	 irrelevant
variables	and	if	 these	variables	are	accidentally	chosen	as	splits	 in	the	tree,	 the	tree	may
grow	too	large	and	may	end	up	with	less	data	at	every	split,	where	overfitting	is	likely	to
occur.	 To	 address	 this	 problem,	 feature	 selection	 can	 be	 introduced	 in	 the	 data
preprocessing	phase	to	eliminate	the	irrelevant	variables.

Although	decision	trees	are	able	to	handle	correlated	variables,	decision	trees	are	not	well
suited	when	most	 of	 the	 variables	 in	 the	 training	 set	 are	 correlated,	 since	 overfitting	 is
likely	to	occur.	To	overcome	the	issue	of	instability	and	potential	overfitting	of	deep	trees,
one	 can	 combine	 the	 decisions	 of	 several	 randomized	 shallow	decision	 trees—the	basic
idea	of	another	classifier	called	random	forest	[4]—or	use	ensemble	methods	to	combine
several	weak	learners	for	better	classification.	These	methods	have	been	shown	to	improve
predictive	power	compared	to	a	single	decision	tree.

For	binary	decisions,	a	decision	tree	works	better	if	the	training	dataset	consists	of	records
with	 an	 even	 probability	 of	 each	 result.	 In	 other	words,	 the	 root	 of	 the	 tree	 has	 a	 50%
chance	of	 either	 classification.	This	 occurs	 by	 randomly	 selecting	 training	 records	 from
each	possible	classification	in	equal	numbers.	It	counteracts	the	likelihood	that	a	tree	will
stump	out	early	by	passing	purity	tests	because	of	bias	in	the	training	data.

When	using	methods	such	as	logistic	regression	on	a	dataset	with	many	variables,	decision
trees	 can	 help	 determine	 which	 variables	 are	 the	 most	 useful	 to	 select	 based	 on
information	gain.	Then	these	variables	can	be	selected	for	the	logistic	regression.	Decision
trees	can	also	be	used	to	prune	redundant	variables.

7.1.5	Decision	Trees	in	R
In	R,	rpart	 is	for	modeling	decision	trees,	and	an	optional	package	rpart.plot	enables

the	plotting	of	a	 tree.	The	 rest	of	 this	 section	shows	an	example	of	how	 to	use	decision
trees	in	R	with	rpart.plot	to	predict	whether	to	play	golf	given	factors	such	as	weather
outlook,	temperature,	humidity,	and	wind.

In	R,	first	set	the	working	directory	and	initialize	the	packages.
setwd(“c:/”)

install.packages(“rpart.plot”)	#	install	package	rpart.plot

library(“rpart”)	#	load	libraries

library(“rpart.plot”)

The	working	directory	contains	a	comma-separated-value	(CSV)	file	named	DTdata.csv.
The	file	has	a	header	row,	followed	by	10	rows	of	training	data.
Play,Outlook,Temperature,Humidity,Wind

yes,rainy,cool,normal,FALSE

no,rainy,cool,normal,TRUE

yes,overcast,hot,high,FALSE

no,sunny,mild,high,FALSE

yes,rainy,cool,normal,FALSE

yes,sunny,cool,normal,FALSE

yes,rainy,cool,normal,FALSE

yes,sunny,hot,normal,FALSE

yes,overcast,mild,high,TRUE

no,sunny,mild,high,TRUE

The	 CSV	 file	 contains	 five	 attributes:	 Play,	 Outlook,	 Temperature,	 Humidity,	 and
Wind.	 Play	 would	 be	 the	 output	 variable	 (or	 the	 predicted	 class),	 and	 Outlook,
Temperature,	Humidity,	and	Wind	would	be	the	input	variables.	In	R,	read	the	data	from
the	CSV	file	in	the	working	directory	and	display	the	content.
play_decision	<-	read.table(“DTdata.csv”,header=TRUE,sep=”,”)

play_decision

Play	Outlook	Temperature	Humidity	Wind

1	yes	rainy		cool	normal	FALSE

2	no	rainy		cool	normal	TRUE

3	yes	overcast			hot		high	FALSE

4	no	sunny		mild		high	FALSE

5	yes	rainy		cool	normal	FALSE

6	yes	sunny		cool	normal	FALSE

7	yes	rainy		cool	normal	FALSE

8	yes	sunny			hot	normal	FALSE

9	yes	overcast		mild		high	TRUE

10	no	sunny		mild		high	TRUE

Display	a	summary	of	play_decision.
summary(play_decision)

Play		Outlook	Temperature	Humidity	Wind

no	:3	overcast:2	cool:5		high	:4	Mode	:logical

yes:7	rainy	:4	hot	:2		normal:6	FALSE:7

			sunny	:4	mild:3					TRUE	:3

												NA’s	:0

The	rpart	function	builds	a	model	of	recursive	partitioning	and	regression	trees	[9].	The
following	code	snippet	shows	how	to	use	the	rpart	function	to	construct	a	decision	tree.
fit	<-	rpart(Play	˜	Outlook	+	Temperature	+	Humidity	+	Wind,

				method=“class”,

				data=play_decision,

				control=rpart.control(minsplit=1),

				parms=list(split=‘information’))

The	 rpart	 function	 has	 four	 parameters.	 The	 first	 parameter,	 Play	 ˜	 Outlook	 +

Temperature	 +	 Humidity	 +	 Wind,	 is	 the	 model	 indicating	 that	 attribute	 Play	 can	 be
predicted	based	on	attributes	Outlook,	Temperature,	Humidity,	and	Wind.	The	second
parameter,	method,	is	set	to	“class,”	telling	R	it	is	building	a	classification	tree.	The	third
parameter,	 data,	 specifies	 the	 dataframe	 containing	 those	 attributes	 mentioned	 in	 the
formula.	The	fourth	parameter,	control,	 is	optional	and	controls	 the	 tree	growth.	 In	 the
preceding	example,	control=rpart.control(minsplit=1)	 requires	 that	 each	node	have
at	 least	 one	 observation	 before	 attempting	 a	 split.	 The	minsplit=1	makes	 sense	 for	 the
small	dataset,	but	for	larger	datasets	minsplit	could	be	set	to	10%	of	the	dataset	size	to
combat	 overfitting.	 Besides	 minsplit,	 other	 parameters	 are	 available	 to	 control	 the
construction	of	 the	decision	 tree.	For	example,	rpart.control(maxdepth=10,cp=0.001)
limits	the	depth	of	the	tree	to	no	more	than	10,	and	a	split	must	decrease	the	overall	lack	of
fit	by	a	 factor	of	0.001	before	being	attempted.	The	 last	parameter	 (parms)	specifies	 the
purity	measure	being	used	 for	 the	splits.	The	value	of	split	can	be	either	information
(for	using	the	information	gain)	or	gini	(for	using	the	Gini	index).

Enter	summary(fit)	to	produce	a	summary	of	the	model	built	from	rpart.

The	output	includes	a	summary	of	every	node	in	the	constructed	decision	tree.	If	a	node	is
a	leaf,	the	output	includes	both	the	predicted	class	label	(yes	or	no	for	Play)	and	the	class
probabilities—P(Play).	The	leaf	nodes	include	node	numbers	4,	5,	6,	and	7.	If	a	node	is
internal,	the	output	in	addition	displays	the	number	of	observations	that	lead	to	each	child
node	and	the	improvement	that	each	attribute	may	bring	for	the	next	split.	These	internal
nodes	include	numbers	1,	2,	and	3.
summary(fit)

Call:

rpart(formula	=	Play	˜	Outlook	+	Temperature	+	Humidity	+	Wind,

data	=	play_decision,	method	=	“class”,

parms	=	list(split	=	“information”),

		control	=	rpart.control(minsplit	=	1))

n=	10

			CP	nsplit	rel	error	xerror		xstd

1	0.3333333		0			1	1.000000	0.4830459

2	0.0100000		3			0	1.666667	0.5270463

Variable	importance

		Wind		Outlook	Temperature

			51			29			20

Node	number	1:	10	observations,	complexity	param=0.3333333

predicted	class=yes	expected	loss=0.3	P(node)	=1

class	counts:		3		7

probabilities:	0.300	0.700

left	son=2	(3	obs)	right	son=3	(7	obs)

Primary	splits:

		Temperature	splits	as	RRL,		improve=1.3282860,	(0	missing)

		Wind		<	0.5	to	the	right,	improve=1.3282860,	(0	missing)

		Outlook		splits	as	RLL,		improve=0.8161371,	(0	missing)

		Humidity	splits	as	LR,		improve=0.6326870,	(0	missing)

Surrogate	splits:

		Wind	<	0.5	to	the	right,	agree=0.8,	adj=0.333,	(0	split)

Node	number	2:	3	observations,	complexity	param=0.3333333

predicted	class=no	expected	loss=0.3333333	P(node)	=0.3

class	counts:		2		1

probabilities:	0.667	0.333

left	son=4	(2	obs)	right	son=5	(1	obs)

Primary	splits:

		Outlook	splits	as	R-L,		improve=1.9095430,	(0	missing)

		Wind	<	0.5	to	the	left,	improve=0.5232481,	(0	missing)

Node	number	3:	7	observations,	complexity	param=0.3333333

predicted	class=yes	expected	loss=0.1428571	P(node)	=0.7

class	counts:		1		6

probabilities:	0.143	0.857

left	son=6	(1	obs)	right	son=7	(6	obs)

Primary	splits:

		Wind		<	0.5	to	the	right,	improve=2.8708140,	(0	missing)

		Outlook		splits	as	RLR,		improve=0.6214736,	(0	missing)

		Temperature	splits	as	LR-,		improve=0.3688021,	(0	missing)

		Humidity	splits	as	RL,		improve=0.1674470,	(0	missing)

Node	number	4:	2	observations

predicted	class=no	expected	loss=0	P(node)	=0.2

class	counts:		2		0

probabilities:	1.000	0.000

Node	number	5:	1	observations

predicted	class=yes	expected	loss=0	P(node)	=0.1

class	counts:		0		1

probabilities:	0.000	1.000

Node	number	6:	1	observations

predicted	class=no	expected	loss=0	P(node)	=0.1

class	counts:		1		0

probabilities:	1.000	0.000

Node	number	7:	6	observations

predicted	class=yes	expected	loss=0	P(node)	=0.6

class	counts:		0		6

probabilities:	0.000	1.000

The	 output	 produced	 by	 the	 summary	 is	 difficult	 to	 read	 and	 comprehend.	 The
rpart.plot()	function	from	the	rpart.plot	package	can	visually	represent	the	output	in
a	decision	tree.	Enter	the	following	command	to	see	the	help	file	of	rpart.plot:
?rpart.plot

Enter	the	following	R	code	to	plot	the	tree	based	on	the	model	being	built.	The	resulting
tree	is	shown	in	Figure	7.9.	Each	node	of	the	tree	is	labeled	as	either	yes	or	no	referring	to
the	 Play	 action	 of	 whether	 to	 play	 outside.	 Note	 that,	 by	 default,	 R	 has	 converted	 the
values	of	Wind	(True/False)	into	numbers.
rpart.plot(fit,	type=4,	extra=1)

Figure	7.9	A	decision	tree	built	from	DTdata.csv

The	decisions	in	Figure	7.9	are	abbreviated.	Use	the	following	command	to	spell	out	the
full	names	and	display	the	classification	rate	at	each	node.
rpart.plot(fit,	type=4,	extra=2,	clip.right.labs=FALSE,

			varlen=0,	faclen=0)

The	decision	tree	can	be	used	to	predict	outcomes	for	new	datasets.	Consider	a	testing	set
that	contains	the	following	record.
Outlook=“rainy”,	Temperature=“mild”,	Humidity=“high”,	Wind=FALSE

The	goal	is	to	predict	the	play	decision	of	this	record.	The	following	code	loads	the	data
into	R	as	a	data	frame	newdata.	Note	that	the	training	set	does	not	contain	this	case.
newdata	<-	data.frame(Outlook=“rainy”,	Temperature=“mild”,

						Humidity=“high”,	Wind=FALSE)

newdata

Outlook	Temperature	Humidity	Wind

1	rainy		mild		high	FALSE

Next,	 use	 the	predict	 function	 to	 generate	 predictions	 from	 a	 fitted	 rpart	 object.	 The
format	of	the	predict	function	follows.
predict(object,	newdata	=	list(),

		type	=	c(“vector”,	“prob”,	“class”,	“matrix”))

Parameter	 type	 is	 a	 character	 string	 denoting	 the	 type	 of	 the	 predicted	 value.	 Set	 it	 to
either	prob	or	class	to	predict	using	a	decision	tree	model	and	receive	the	result	as	either
the	class	probabilities	or	just	the	class.	The	output	shows	that	one	instance	is	classified	as
Play=no,	 and	 zero	 instances	 are	 classified	 as	 Play=yes.	 Therefore,	 in	 both	 cases,	 the
decision	tree	predicts	that	the	play	decision	of	the	testing	set	is	not	to	play.
predict(fit,newdata=newdata,type=“prob”)

no	yes

1	1	0

predict(fit,newdata=newdata,type=“class”)

1

no

Levels:	no	yes

7.2	Naïve	Bayes
Naïve	Bayes	is	a	probabilistic	classification	method	based	on	Bayes’	theorem	(or	Bayes’
law)	with	a	few	tweaks.	Bayes’	theorem	gives	the	relationship	between	the	probabilities	of
two	 events	 and	 their	 conditional	 probabilities.	 Bayes’	 law	 is	 named	 after	 the	 English
mathematician	Thomas	Bayes.

A	naïve	Bayes	classifier	assumes	that	the	presence	or	absence	of	a	particular	feature	of	a
class	is	unrelated	to	the	presence	or	absence	of	other	features.	For	example,	an	object	can
be	 classified	 based	 on	 its	 attributes	 such	 as	 shape,	 color,	 and	 weight.	 A	 reasonable
classification	for	an	object	that	is	spherical,	yellow,	and	less	than	60	grams	in	weight	may
be	a	tennis	ball.	Even	if	these	features	depend	on	each	other	or	upon	the	existence	of	the
other	 features,	 a	 naïve	 Bayes	 classifier	 considers	 all	 these	 properties	 to	 contribute
independently	to	the	probability	that	the	object	is	a	tennis	ball.

The	 input	variables	 are	generally	 categorical,	 but	variations	of	 the	 algorithm	can	 accept
continuous	variables.	There	are	also	ways	to	convert	continuous	variables	into	categorical
ones.	This	process	is	often	referred	to	as	the	discretization	of	continuous	variables.	In	the
tennis	ball	example,	a	continuous	variable	such	as	weight	can	be	grouped	into	intervals	to
be	converted	into	a	categorical	variable.	For	an	attribute	such	as	income,	the	attribute	can
be	converted	into	categorical	values	as	shown	below.

	
Low	Income:	income	<	$10,000
Working	Class:	$10,000	≤	income	<	$50,000
Middle	Class:	$50,000	≤	income	<	$1,000,000
Upper	Class:	income	≥	$1,000,000

The	 output	 typically	 includes	 a	 class	 label	 and	 its	 corresponding	 probability	 score.	 The
probability	score	is	not	 the	true	probability	of	 the	class	 label,	but	 it’s	proportional	 to	the
true	 probability.	 As	 shown	 later	 in	 the	 chapter,	 in	 most	 implementations,	 the	 output
includes	the	log	probability	for	the	class,	and	class	labels	are	assigned	based	on	the	highest
values.

Because	naïve	Bayes	 classifiers	 are	 easy	 to	 implement	 and	 can	 execute	 efficiently	 even
without	 prior	 knowledge	 of	 the	 data,	 they	 are	 among	 the	 most	 popular	 algorithms	 for
classifying	 text	 documents.	 Spam	 filtering	 is	 a	 classic	 use	 case	 of	 naïve	 Bayes	 text
classification.	 Bayesian	 spam	 filtering	 has	 become	 a	 popular	 mechanism	 to	 distinguish
spam	 e-mail	 from	 legitimate	 e-mail.	 Many	 modern	 mail	 clients	 implement	 variants	 of
Bayesian	spam	filtering.

Naïve	Bayes	classifiers	can	also	be	used	for	 fraud	detection	 [11].	 In	 the	domain	of	auto
insurance,	 for	 example,	 based	 on	 a	 training	 set	 with	 attributes	 such	 as	 driver’s	 rating,
vehicle	age,	vehicle	price,	historical	claims	by	the	policy	holder,	police	report	status,	and
claim	genuineness,	naïve	Bayes	can	provide	probability-based	classification	of	whether	a
new	claim	is	genuine	[12].

7.2.1	Bayes’	Theorem

The	conditional	probability	of	event	C	occurring,	given	that	event	A	has	already	occurred,
is	denoted	as	 ,	which	can	be	found	using	the	formula	in	Equation	7.6.

7.6	

Equation	7.7	can	be	obtained	with	some	minor	algebra	and	substitution	of	the	conditional
probability:

7.7	

where	 C	 is	 the	 class	 label	 	 and	 A	 is	 the	 observed	 attributes	 .
Equation	7.7	is	the	most	common	form	of	the	Bayes’	theorem.

Mathematically,	Bayes’	theorem	gives	the	relationship	between	the	probabilities	of	C	and
A,	 	and	 ,	and	the	conditional	probabilities	of	C	given	A	and	A	given	C,	namely	
and	 .

Bayes’	theorem	is	significant	because	quite	often	 	is	much	more	difficult	to	compute
than	 	and	 	 from	the	 training	data.	By	using	Bayes’	 theorem,	 this	problem	can	be
circumvented.

An	example	better	illustrates	the	use	of	Bayes’	theorem.	John	flies	frequently	and	likes	to
upgrade	his	seat	to	first	class.	He	has	determined	that	if	he	checks	in	for	his	flight	at	least
two	 hours	 early,	 the	 probability	 that	 he	 will	 get	 an	 upgrade	 is	 0.75;	 otherwise,	 the
probability	 that	 he	will	 get	 an	upgrade	 is	 0.35.	With	his	 busy	 schedule,	 he	 checks	 in	 at
least	 two	hours	before	his	 flight	only	40%	of	 the	 time.	Suppose	John	did	not	 receive	an
upgrade	 on	 his	most	 recent	 attempt.	What	 is	 the	 probability	 that	 he	 did	 not	 arrive	 two
hours	early?

Let	C	=	{John	arrived	at	least	two	hours	early},	and	A	=	{John	received	an	upgrade},	then
¬C	=	{John	did	not	arrive	two	hours	early},	and	¬A	=	{John	did	not	receive	an	upgrade}.

John	 checked	 in	 at	 least	 two	 hours	 early	 only	 40%	 of	 the	 time,	 or	 .	 Therefore,	
.

The	probability	that	John	received	an	upgrade	given	that	he	checked	in	early	is	0.75,	or	
.

The	probability	that	John	received	an	upgrade	given	that	he	did	not	arrive	two	hours	early
is	0.35,	or	 .	Therefore,	 .

The	probability	that	John	received	an	upgrade	 	can	be	computed	as	shown	in	Equation
7.8.

7.8	

Thus,	 the	 probability	 that	 John	 did	 not	 receive	 an	 upgrade	 .	 Using	 Bayes’
theorem,	 the	 probability	 that	 John	 did	 not	 arrive	 two	 hours	 early	 given	 that	 he	 did	 not
receive	his	upgrade	is	shown	in	Equation	7.9.

7.9	

Another	example	involves	computing	the	probability	that	a	patient	carries	a	disease	based
on	the	result	of	a	lab	test.	Assume	that	a	patient	named	Mary	took	a	lab	test	for	a	certain
disease	and	the	result	came	back	positive.	The	test	returns	a	positive	result	in	95%	of	the
cases	in	which	the	disease	is	actually	present,	and	it	returns	a	positive	result	in	6%	of	the
cases	in	which	the	disease	is	not	present.	Furthermore,	1%	of	the	entire	population	has	this
disease.	What	 is	 the	probability	 that	Mary	actually	has	 the	disease,	given	 that	 the	 test	 is
positive?

Let	 C	 =	 {having	 the	 disease}	 and	 A	 =	 {testing	 positive}.	 The	 goal	 is	 to	 solve	 the
probability	of	having	the	disease,	given	that	Mary	has	a	positive	test	result,	 .	From	the
problem	description,	 ,	 ,	 	and	 .

Bayes’	theorem	defines	 .	The	probability	of	testing	positive,	that	is	 ,
needs	to	be	computed	first.	That	computation	is	shown	in	Equation	7.10.

7.10	

According	to	Bayes’	theorem,	the	probability	of	having	the	disease,	given	that	Mary	has	a
positive	test	result,	is	shown	in	Equation	7.11.

7.11	

That	means	that	the	probability	of	Mary	actually	having	the	disease	given	a	positive	test
result	 is	only	13.79%.	This	result	 indicates	 that	 the	lab	test	may	not	be	a	good	one.	The
likelihood	of	 having	 the	 disease	was	 1%	when	 the	 patient	walked	 in	 the	 door	 and	 only
13.79%	when	the	patient	walked	out,	which	would	suggest	further	tests.

A	 more	 general	 form	 of	 Bayes’	 theorem	 assigns	 a	 classified	 label	 to	 an	 object	 with
multiple	attributes	 	such	that	the	label	corresponds	to	the	largest	value	of	 .
The	probability	that	a	set	of	attribute	values	 	(composed	of	 	variables)	should
be	 labeled	 with	 a	 classification	 label	 	 equals	 the	 probability	 that	 the	 set	 of	 variables	

	given	 	is	true,	times	the	probability	of	 	divided	by	the	probability	of	 .
Mathematically,	this	is	shown	in	Equation	7.12.

7.12	

Consider	the	bank	marketing	example	presented	in	Section	7.1	on	predicting	if	a	customer
would	subscribe	to	a	term	deposit.	Let	 	be	a	list	of	attributes	{job,	marital,	education,
default,	housing,	loan,	contact,	poutcome}.	According	to	Equation	7.12,	the	problem	is
essentially	to	calculate	 ,	where	 .

7.2.2	Naïve	Bayes	Classifier
With	 two	 simplifications,	 Bayes’	 theorem	 can	 be	 extended	 to	 become	 a	 naïve	 Bayes

classifier.

The	 first	 simplification	 is	 to	use	 the	conditional	 independence	assumption.	That	 is,	each
attribute	 is	 conditionally	 independent	 of	 every	 other	 attribute	 given	 a	 class	 label	 .	 See
Equation	7.13.

7.13	

Therefore,	this	naïve	assumption	simplifies	the	computation	of	 .

The	 second	 simplification	 is	 to	 ignore	 the	 denominator	 .	 Because	
appears	in	the	denominator	of	 	for	all	values	of	i,	removing	the	denominator	will	have
no	impact	on	the	relative	probability	scores	and	will	simplify	calculations.

Naïve	 Bayes	 classification	 applies	 the	 two	 simplifications	 mentioned	 earlier	 and,	 as	 a
result,	 	 is	 proportional	 to	 the	 product	 of	 	 times	 .	 This	 is	 shown	 in
Equation	7.14.

7.14	

The	mathematical	 symbol	 	 indicates	 that	 the	 LHS	 	 is	 directly	 proportional	 to	 the
RHS.

Section	7.1	has	introduced	a	bank	marketing	dataset	(Figure	7.3).	This	section	shows	how
to	use	the	naïve	Bayes	classifier	on	this	dataset	to	predict	if	the	clients	would	subscribe	to
a	term	deposit.

Building	a	naïve	Bayes	 classifier	 requires	knowing	certain	 statistics,	 all	 calculated	 from
the	training	set.	The	first	requirement	is	to	collect	the	probabilities	of	all	class	labels,	 .
In	the	presented	example,	these	would	be	the	probability	that	a	client	will	subscribe	to	the
term	deposit	and	the	probability	the	client	will	not.	From	the	data	available	in	the	training
set,	 	and	 .

The	second	thing	the	naïve	Bayes	classifier	needs	to	know	is	the	conditional	probabilities
of	each	attribute	 	given	each	class	label	 ,	namely	 .	The	training	set	contains	several
attributes:	job,	marital,	education,	default,	housing,	loan,	contact,	and	poutcome.	For
each	 attribute	 and	 its	 possible	 values,	 computing	 the	 conditional	 probabilities	 given	

	or	 	is	required.	For	example,	relative	to	the	marital	attribute,	the
following	conditional	probabilities	are	calculated.

After	 training	 the	 classifier	 and	 computing	 all	 the	 required	 statistics,	 the	 naïve	 Bayes
classifier	 can	be	 tested	over	 the	 testing	 set.	For	 each	 record	 in	 the	 testing	 set,	 the	naïve

Bayes	classifier	assigns	the	classifier	label	 	that	maximizes	 .

Table	7.4	contains	a	single	record	for	a	client	who	has	a	career	in	management,	is	married,
holds	 a	 secondary	 degree,	 has	 credit	 not	 in	 default,	 has	 a	 housing	 loan	 but	 no	 personal
loans,	prefers	to	be	contacted	via	cellular,	and	whose	outcome	of	the	previous	marketing
campaign	contact	was	a	success.	Is	this	client	likely	to	subscribe	to	the	term	deposit?

Table	7.4	Record	of	an	Additional	Client

Job Marital Education Default Housing Loan Contact Poutcome
management married secondary no yes no cellular Success

The	 conditional	 probabilities	 shown	 in	 Table	 7.5	 can	 be	 calculated	 after	 building	 the
classifier	with	the	training	set.

Table	7.5	Compute	Conditional	Probabilities	for	the	New	Record

j aj P(aj	|	subscribed	=	yes) P	(aj	(|	subscribed	=	no)

1 job	=	management 0.22 0.21
2 marital	=	married 0.53 0.61
3 education	=	secondary 0.46 0.51
4 default	=	no 0.99 0.98
5 housing	=	yes 0.35 0.57
6 loan	=	no 0.90 0.85
7 contact	=	cellular 0.85 0.62
8 poutcome	=	success 0.15 0.01

Because	 	 is	 proportional	 to	 the	 product	 of	 	 times	 	 ,	 the	 naïve
Bayes	classifier	assigns	the	class	label	 	which	results	in	the	greatest	value	over	all	 .	Thus,

	is

computed	for	each	 	with	 .

For	 	=	{management,	married,	secondary,	no,	yes,	no,	cellular,	success},

Because	 ,	the	client	shown	in	Table	7.4	is	assigned	with	the
label	 .	That	is,	the	client	is	classified	as	likely	to	subscribe	to	the	term	deposit.

Although	the	scores	are	small	in	magnitude,	it	is	the	ratio	of	 	and	 	that	matters.
In	 fact,	 the	 scores	 of	 	 and	 	 are	 not	 the	 true	 probabilities	 but	 are	 only
proportional	 to	 the	 true	probabilities,	 as	 shown	 in	Equation	7.14.	After	all,	 if	 the	 scores
were	 indeed	 the	 true	 probabilities,	 the	 sum	 of	 	 and	 	would	 be	 equal	 to	 one.

When	 looking	 at	 problems	 with	 a	 large	 number	 of	 attributes,	 or	 attributes	 with	 a	 high
number	 of	 levels,	 these	 values	 can	 become	 very	 small	 in	 magnitude	 (close	 to	 zero),
resulting	 in	 even	 smaller	 differences	 of	 the	 scores.	 This	 is	 the	 problem	 of	 numerical
underflow,	caused	by	multiplying	several	probability	values	that	are	close	to	zero.	A	way
to	alleviate	the	problem	is	to	compute	the	logarithm	of	the	products,	which	is	equivalent	to
the	summation	of	the	logarithm	of	the	probabilities.	Thus,	the	naïve	Bayes	formula	can	be
rewritten	as	shown	in	Equation	7.15.

7.15	

Although	the	risk	of	underflow	may	increase	as	the	number	of	attributes	increases,	the	use
of	logarithms	is	usually	applied	regardless	of	the	number	of	attribute	dimensions.

7.2.3	Smoothing
If	 one	 of	 the	 attribute	 values	 does	 not	 appear	 with	 one	 of	 the	 class	 labels	 within	 the
training	set,	the	corresponding	 	will	equal	zero.	When	this	happens,	the	resulting	
from	multiplying	all	 the	 	 immediately	becomes	zero	 regardless	of	how	 large
some	 of	 the	 conditional	 probabilities	 are.	 Therefore	 overfitting	 occurs.	 Smoothing
techniques	can	be	employed	 to	adjust	 the	probabilities	of	 	 and	 to	ensure	a	nonzero
value	of	 .	A	smoothing	 technique	assigns	a	small	nonzero	probability	 to	 rare	events
not	included	in	the	training	dataset.	Also,	the	smoothing	addresses	the	possibility	of	taking
the	logarithm	of	zero	that	may	occur	in	Equation	7.15.

There	are	various	smoothing	techniques.	Among	them	is	the	Laplace	smoothing	(or	add-
one)	technique	that	pretends	to	see	every	outcome	once	more	than	it	actually	appears.	This
technique	is	shown	in	Equation	7.16.

7.16	

For	example,	say	that	100	clients	subscribe	to	the	term	deposit,	with	20	of	them	single,	70
married,	 and	 10	 divorced.	The	 “raw”	 probability	 is	 .	With
Laplace	 smoothing	 adding	 one	 to	 the	 counts,	 the	 adjusted	 probability	 becomes	

.

One	 problem	 of	 the	 Laplace	 smoothing	 is	 that	 it	 may	 assign	 too	 much	 probability	 to
unseen	 events.	To	 address	 this	 problem,	Laplace	 smoothing	 can	 be	 generalized	 to	 use	
instead	of	1,	where	typically	 .	See	Equation	7.17.

7.17	

Smoothing	 techniques	are	available	 in	most	standard	software	packages	for	naïve	Bayes
classifiers.	 However,	 if	 for	 some	 reason	 (like	 performance	 concerns)	 the	 naïve	 Bayes
classifier	 needs	 to	 be	 coded	 directly	 into	 an	 application,	 the	 smoothing	 and	 logarithm
calculations	should	be	incorporated	into	the	implementation.

7.2.4	Diagnostics
Unlike	logistic	regression,	naïve	Bayes	classifiers	can	handle	missing	values.	Naïve	Bayes

is	also	robust	to	irrelevant	variables—variables	that	are	distributed	among	all	the	classes
whose	effects	are	not	pronounced.

The	model	is	simple	to	implement	even	without	using	libraries.	The	prediction	is	based	on
counting	the	occurrences	of	events,	making	the	classifier	efficient	to	run.	Naïve	Bayes	is
computationally	efficient	and	is	able	to	handle	high-dimensional	data	efficiently.	Related
research	[13]	shows	that	the	naive	Bayes	classifier	in	many	cases	is	competitive	with	other
learning	 algorithms,	 including	 decision	 trees	 and	 neural	 networks.	 In	 some	 cases	 naïve
Bayes	 even	 outperforms	 other	 methods.	 Unlike	 logistic	 regression,	 the	 naïve	 Bayes
classifier	can	handle	categorical	variables	with	many	levels.	Recall	that	decision	trees	can
handle	categorical	variables	as	well,	but	 too	many	 levels	may	 result	 in	a	deep	 tree.	The
naïve	 Bayes	 classifier	 overall	 performs	 better	 than	 decision	 trees	 on	 categorical	 values
with	many	levels.	Compared	to	decision	trees,	naïve	Bayes	is	more	resistant	to	overfitting,
especially	with	the	presence	of	a	smoothing	technique.

Despite	the	benefits	of	naïve	Bayes,	it	also	comes	with	a	few	disadvantages.	Naïve	Bayes
assumes	the	variables	in	the	data	are	conditionally	independent.	Therefore,	it	is	sensitive
to	 correlated	 variables	 because	 the	 algorithm	 may	 double	 count	 the	 effects.	 As	 an
example,	assume	that	people	with	low	income	and	low	credit	tend	to	default.	If	the	task	is
to	score	“default”	based	on	both	income	and	credit	as	two	separate	attributes,	naïve	Bayes
would	 experience	 the	 double-counting	 effect	 on	 the	 default	 outcome,	 thus	 reducing	 the
accuracy	of	the	prediction.

Although	probabilities	are	provided	as	part	of	 the	output	for	 the	prediction,	naïve	Bayes
classifiers	 in	general	 are	not	very	 reliable	 for	probability	 estimation	and	 should	be	used
only	 for	 assigning	 class	 labels.	 Naïve	 Bayes	 in	 its	 simple	 form	 is	 used	 only	 with
categorical	 variables.	 Any	 continuous	 variables	 should	 be	 converted	 into	 a	 categorical
variable	with	the	process	known	as	discretization,	as	shown	earlier.	In	common	statistical
software	 packages,	 however,	 naïve	 Bayes	 is	 implemented	 in	 a	 way	 that	 enables	 it	 to
handle	continuous	variables	as	well.

7.2.5	Naïve	Bayes	in	R
This	 section	 explores	 two	 methods	 of	 using	 the	 naïve	 Bayes	 classifier	 in	 R.	 The	 first
method	 is	 to	 build	 from	 scratch	 by	manually	 computing	 the	 probability	 scores,	 and	 the
second	method	is	to	use	the	naiveBayes	function	from	the	e1071	package.	The	examples
show	 how	 to	 use	 naïve	 Bayes	 to	 predict	 whether	 employees	 would	 enroll	 in	 an	 onsite
educational	program.

In	R,	first	set	up	the	working	directory	and	initialize	the	packages.
setwd(“c:/”)

install.packages(“e1071”)	#	install	package	e1071

library(e1071)	#	load	the	library

The	 working	 directory	 contains	 a	 CSV	 file	 (sample1.csv).	 The	 file	 has	 a	 header	 row,
followed	 by	 14	 rows	 of	 training	 data.	 The	 attributes	 include	 Age,	 Income,
JobSatisfaction,	and	Desire.	The	output	variable	is	Enrolls,	and	its	value	is	either	Yes
or	No.	Full	content	of	the	CSV	file	is	shown	next.
Age,Income,JobSatisfaction,Desire,Enrolls

<=30,High,No,Fair,No

<=30,High,No,Excellent,No

31	to	40,High,No,Fair,Yes

>40,Medium,No,Fair,Yes

>40,Low,Yes,Fair,Yes

>40,Low,Yes,Excellent,No

31	to	40,Low,Yes,Excellent,Yes

<=30,Medium,No,Fair,No

<=30,Low,Yes,Fair,Yes

>40,Medium,Yes,Fair,Yes

<=30,Medium,Yes,Excellent,Yes

31	to	40,Medium,No,Excellent,Yes

31	to	40,High,Yes,Fair,Yes

>40,Medium,No,Excellent,No

<=30,Medium,Yes,Fair,

The	last	record	of	the	CSV	is	used	later	for	illustrative	purposes	as	a	test	case.	Therefore,
it	 does	 not	 include	 a	 value	 for	 the	 output	 variable	 Enrolls,	 which	 should	 be	 predicted
using	the	naïve	Bayes	classifier	built	from	the	training	set.

Execute	the	following	R	code	to	read	data	from	the	CSV	file.
#	read	the	data	into	a	table	from	the	file

sample	<-	read.table(“sample1.csv”,header=TRUE,sep=”,”)

#	define	the	data	frames	for	the	NB	classifier

traindata	<-	as.data.frame(sample[1:14,])

testdata	<-	as.data.frame(sample[15,])

Two	data	 frame	objects	called	traindata	and	testdata	 are	 created	 for	 the	naïve	Bayes
classifier.	Enter	traindata	and	testdata	to	display	the	data	frames.

The	two	data	frames	are	printed	on	the	screen	as	follows.
traindata

		Age	Income	JobSatisfaction	Desire	Enrolls

1		<=30	High				No		Fair		No

2		<=30	High				No	Excellent		No

3	31	to	40	High				No		Fair		Yes

4		>40	Medium				No		Fair		Yes

5		>40	Low				Yes		Fair		Yes

6		>40	Low				Yes	Excellent		No

7	31	to	40	Low				Yes	Excellent		Yes

8		<=30	Medium				No		Fair		No

9		<=30	Low				Yes		Fair		Yes

10		>40	Medium				Yes		Fair		Yes

11		<=30	Medium				Yes	Excellent		Yes

12	31	to	40	Medium				No	Excellent		Yes

13	31	to	40	High				Yes		Fair		Yes

14		>40	Medium				No	Excellent		No

testdata

Age	Income	JobSatisfaction	Desire	Enrolls

15	<=30	Medium				Yes	Fair

The	first	method	shown	here	is	to	build	a	naïve	Bayes	classifier	from	scratch	by	manually
computing	the	probability	scores.	The	first	step	in	building	a	classifier	is	to	compute	the
prior	probabilities	of	the	attributes,	including	Age,	Income,	JobSatisfaction,	and	Desire.
According	to	the	naïve	Bayes	classifier,	these	attributes	are	conditionally	independent.	The
dependent	variable	(output	variable)	is	Enrolls.

Compute	the	prior	probabilities	 	for	Enrolls,	where	 	and	 .
tprior	<-	table(traindata$Enrolls)

tprior

		No	Yes

0	5	9

tprior	<-	tprior/sum(tprior)

tprior

					No		Yes

0.0000000	0.3571429	0.6428571

The	 next	 step	 is	 to	 compute	 conditional	 probabilities	 ,	 where	
	and	 .	Count	the	number	of	“No”	and	“Yes”	entries

for	each	Age	group,	and	normalize	by	the	 total	number	of	“No”	and	“Yes”	entries	 to	get
the	conditional	probabilities.
ageCounts	<-	table(traindata[,c(“Enrolls”,	“Age”)])

ageCounts

		Age

Enrolls	<=30	>40	31	to	40

			0	0		0

No		3	2		0

Yes		2	3		4

ageCounts	<-	ageCounts/rowSums(ageCounts)

ageCounts

		Age

Enrolls		<=30		>40	31	to	40

No	0.6000000	0.4000000	0.0000000

Yes	0.2222222	0.3333333	0.4444444

Do	the	same	for	the	other	attributes	including	Income,	JobSatisfaction,	and	Desire.
incomeCounts	<-	table(traindata[,c(“Enrolls”,	“Income”)])

incomeCounts	<-	incomeCounts/rowSums(incomeCounts)

incomeCounts

		Income

Enrolls		High		Low	Medium

No	0.4000000	0.2000000	0.4000000

Yes	0.2222222	0.3333333	0.4444444

jsCounts	<-	table(traindata[,c(“Enrolls”,	“JobSatisfaction”)])

jsCounts	<-	jsCounts/rowSums(jsCounts)

jsCounts

		Jobsatisfaction

Enrolls		No		Yes

No	0.8000000	0.2000000

Yes	0.3333333	0.6666667

desireCounts	<-	table(traindata[,c(“Enrolls”,	“Desire”)])

desireCounts	<-	desireCounts/rowSums(desireCounts)

desireCounts

		Desire

Enrolls	Excellent		Fair

No	0.6000000	0.4000000

Yes	0.3333333	0.6666667

According	 to	Equation	7.7,	probability	 	 is	determined	by	 the	product	of	 	 times
the	 	where	 	and	 .	The	larger	value	of	 	and	 	determines	the	predicted
result	 of	 the	 output	 variable.	Given	 the	 test	 data,	 use	 the	 following	 code	 to	 predict	 the

Enrolls.
prob_yes	<-

			ageCounts[“Yes”,testdata[,c(“Age”)]]*

			incomeCounts[“Yes”,testdata[,c(“Income”)]]*

			jsCounts[“Yes”,testdata[,c(“JobSatisfaction”)]]*

			desireCounts[“Yes”,testdata[,c(“Desire”)]]*

			tprior[“Yes”]

prob_no	<-

			ageCounts[“No”,testdata[,c(“Age”)]]*

			incomeCounts[“No”,testdata[,c(“Income”)]]*

			jsCounts[“No”,testdata[,c(“JobSatisfaction”)]]*

			desireCounts[“No”,testdata[,c(“Desire”)]]*

			tprior[“No”]

max(prob_yes,prob_no)

As	shown	below,	the	predicted	result	of	the	test	set	is	Enrolls=Yes.
prob_yes

		Yes

0.02821869

prob_no

			No

0.006857143

max(prob_yes,	prob_no)

[1]	0.02821869

The	 e1071	 package	 in	 R	 has	 a	 built-in	 naiveBayes	 function	 that	 can	 compute	 the
conditional	 probabilities	 of	 a	 categorical	 class	 variable	 given	 independent	 categorical
predictor	 variables	 using	 the	 Bayes	 rule.	 The	 function	 takes	 the	 form	 of
naiveBayes(formula,	data,…),	where	the	arguments	are	defined	as	follows.

	
formula:	A	formula	of	the	form	class	˜	x1	+	x2	+	…	assuming	x1,	x2…	are
conditionally	independent
data:	A	data	frame	of	factors

Use	the	following	code	snippet	to	execute	the	model	and	display	the	results.
model	<-	naiveBayes(Enrolls	˜	Age+Income+JobSatisfaction+Desire,

					traindata)

#	display	model

model

The	output	that	follows	shows	that	the	probabilities	of	model	match	the	probabilities	from
the	 previous	 method.	 The	 default	 laplace=laplace	 setting	 enables	 the	 Laplace
smoothing.
Naive	Bayes	Classifier	for	Discrete	Predictors

Call:

naiveBayes.default(x	=	X,	y	=	Y,	laplace	=	laplace)

A-priori	probabilities:

Y					No		Yes

0.0000000	0.3571429	0.6428571

Conditional	probabilities:

		Age

Y			<=30		>40	31	to	40

No	0.6000000	0.4000000	0.0000000

Yes	0.2222222	0.3333333	0.4444444

		Income

Y			High		Low	Medium

No	0.4000000	0.2000000	0.4000000

Yes	0.2222222	0.3333333	0.4444444

		JobSatisfaction

Y			No		Yes

No	0.8000000	0.2000000

Yes	0.3333333	0.6666667

		Desire

Y		Excellent		Fair

No	0.6000000	0.4000000

Yes	0.3333333	0.6666667

Next,	 predicting	 the	 outcome	 of	 Enrolls	 with	 the	 testdata	 shows	 the	 result	 is
Enrolls=Yes.
#	predict	with	testdata

results	<-	predict	(model,testdata)

#	display	results

results

[1]	Yes

Levels:	No	Yes

The	naiveBayes	function	accepts	a	Laplace	parameter	that	allows	the	customization	of	the
	value	of	Equation	7.17	for	the	Laplace	smoothing.	The	code	that	follows	shows	how	to
build	a	naïve	Bayes	classifier	with	Laplace	smoothing	 	for	prediction.
#	use	the	NB	classifier	with	Laplace	smoothing

model1	=	naiveBayes(Enrolls	˜.,	traindata,	laplace=.01)

#	display	model

model1

Naive	Bayes	Classifier	for	Discrete	Predictors

Call:

naiveBayes.default(x	=	X,	y	=	Y,	laplace	=	laplace)

A-priori	probabilities:

Y

					No		Yes

0.0000000	0.3571429	0.6428571

Conditional	probabilities:

		Age

Y			<=30			>40	31	to	40

		0.333333333	0.333333333	0.333333333

No	0.598409543	0.399602386	0.001988072

Yes	0.222591362	0.333333333	0.444075305

		Income

Y			High		Low	Medium

		0.3333333	0.3333333	0.3333333

No	0.3996024	0.2007952	0.3996024

Yes	0.2225914	0.3333333	0.4440753

		JobSatisfaction

Y			No		Yes

		0.5000000	0.5000000

No	0.7988048	0.2011952

Yes	0.3337029	0.6662971

		Desire

Y		Excellent		Fair

		0.5000000	0.5000000

No	0.5996016	0.4003984

Yes	0.3337029	0.6662971

The	test	case	is	again	classified	as	Enrolls=Yes.
#	predict	with	testdata

results1	<-	predict	(model1,testdata)

#	display	results

results1

[1]	Yes

Levels:	No	Yes

7.3	Diagnostics	of	Classifiers
So	far,	this	book	has	talked	about	three	classifiers:	logistic	regression,	decision	trees,	and
naïve	Bayes.	These	 three	methods	 can	be	used	 to	 classify	 instances	 into	distinct	groups
according	to	the	similar	characteristics	they	share.	Each	of	these	classifiers	faces	the	same
issue:	how	to	evaluate	if	they	perform	well.

A	few	tools	have	been	designed	to	evaluate	the	performance	of	a	classifier.	Such	tools	are
not	 limited	 to	 the	 three	classifiers	 in	 this	book	but	 rather	 serve	 the	purpose	of	assessing
classifiers	in	general.

A	confusion	matrix	is	a	specific	table	layout	that	allows	visualization	of	the	performance
of	a	classifier.

Table	7.6	shows	the	confusion	matrix	for	a	two-class	classifier.	True	positives	(TP)	are	the
number	of	positive	instances	the	classifier	correctly	identified	as	positive.	False	positives
(FP)	are	the	number	of	instances	in	which	the	classifier	identified	as	positive	but	in	reality
are	 negative.	 True	 negatives	 (TN)	 are	 the	 number	 of	 negative	 instances	 the	 classifier
correctly	 identified	 as	 negative.	 False	 negatives	 (FN)	 are	 the	 number	 of	 instances
classified	 as	 negative	 but	 in	 reality	 are	 positive.	 In	 a	 two-class	 classification,	 a	 preset
threshold	may	 be	 used	 to	 separate	 positives	 from	negatives.	 TP	 and	TN	 are	 the	 correct
guesses.	A	good	classifier	should	have	large	TP	and	TN	and	small	(ideally	zero)	numbers
for	FP	and	FN.

Table	7.6	Confusion	Matrix

Predicted	Class
Positive Negative

Actual	Class Positive True	Positives	(TP) False	Negatives	(FN)
Negative False	Positives	(FP) True	Negatives	(TN)

In	 the	bank	marketing	 example,	 the	 training	 set	 includes	 2,000	 instances.	An	 additional
100	 instances	are	 included	as	 the	 testing	 set.	Table	7.7	 shows	 the	confusion	matrix	of	a
naïve	Bayes	classifier	on	100	clients	to	predict	whether	they	would	subscribe	to	the	term
deposit.	 Of	 the	 11	 clients	 who	 subscribed	 to	 the	 term	 deposit,	 the	 model	 predicted	 3
subscribed	and	8	not	subscribed.	Similarly,	of	the	89	clients	who	did	not	subscribe	to	the
term,	 the	 model	 predicted	 2	 subscribed	 and	 87	 not	 subscribed.	 All	 correct	 guesses	 are
located	from	top	left	to	bottom	right	of	the	table.	It’s	easy	to	visually	inspect	the	table	for
errors,	because	they	will	be	represented	by	any	nonzero	values	outside	the	diagonal.

Table	7.7	Confusion	Matrix	of	Naïve	Bayes	from	the	Bank	Marketing	Example

Predicted	Class Total
Subscribe Not	Subscribed

Actual	Class Subscribed 3 8 11
Not	Subscribed 2 87 89

Total 5 95 100

The	accuracy	(or	the	overall	success	rate)	is	a	metric	defining	the	rate	at	which	a	model
has	classified	the	records	correctly.	It	is	defined	as	the	sum	of	TP	and	TN	divided	by	the
total	number	of	instances,	as	shown	in	Equation	7.18.

7.18	

A	good	model	should	have	a	high	accuracy	score,	but	having	a	high	accuracy	score	alone
does	 not	 guarantee	 the	 model	 is	 well	 established.	 The	 following	 measures	 can	 be
introduced	to	better	evaluate	the	performance	of	a	classifier.

As	 seen	 in	 Chapter	 6,	 the	 true	 positive	 rate	 (TPR)	 shows	 what	 percent	 of	 positive
instances	the	classifier	correctly	identified.	It’s	also	illustrated	in	Equation	7.19.

7.19	

The	 false	 positive	 rate	 (FPR)	 shows	what	 percent	 of	 negatives	 the	 classifier	marked	 as
positive.	The	FPR	is	also	called	the	false	alarm	rate	or	the	type	I	error	rate	and	is	shown
in	Equation	7.20.

7.20	

The	 false	negative	rate	 (FNR)	 shows	what	percent	of	positives	 the	 classifier	marked	as
negatives.	It	is	also	known	as	the	miss	rate	or	type	II	error	rate	and	is	shown	in	Equation
7.21.	Note	that	the	sum	of	TPR	and	FNR	is	1.

7.21	

A	well-performed	model	should	have	a	high	TPR	that	is	ideally	1	and	a	low	FPR	and	FNR
that	are	ideally	0.	In	reality,	it’s	rare	to	have	TPR	=	1,	FPR	=	0,	and	FNR	=	0,	but	these
measures	are	useful	to	compare	the	performance	of	multiple	models	that	are	designed	for
solving	 the	 same	 problem.	Note	 that	 in	 general,	 the	model	 that	 is	more	 preferable	may
depend	 on	 the	 business	 situation.	 During	 the	 discovery	 phase	 of	 the	 data	 analytics
lifecycle,	 the	 team	 should	 have	 learned	 from	 the	 business	 what	 kind	 of	 errors	 can	 be
tolerated.	Some	business	situations	are	more	tolerant	of	type	I	errors,	whereas	others	may
be	more	tolerant	of	type	II	errors.	In	some	cases,	a	model	with	a	TPR	of	0.95	and	an	FPR
of	0.3	is	more	acceptable	than	a	model	with	a	TPR	of	0.9	and	an	FPR	of	0.1	even	if	the
second	model	is	more	accurate	overall.	Consider	the	case	of	e-mail	spam	filtering.	Some
people	 (such	 as	 busy	 executives)	 only	 want	 important	 e-mail	 in	 their	 inbox	 and	 are
tolerant	of	having	some	 less	 important	e-mail	end	up	 in	 their	 spam	folder	as	 long	as	no
spam	is	in	their	inbox.	Other	people	may	not	want	any	important	or	less	important	e-mail
to	be	specified	as	spam	and	are	willing	to	have	some	spam	in	their	inboxes	as	long	as	no
important	e-mail	makes	it	into	the	spam	folder.

Precision	and	recall	are	accuracy	metrics	used	by	the	information	retrieval	community,	but
they	 can	 be	 used	 to	 characterize	 classifiers	 in	 general.	 Precision	 is	 the	 percentage	 of
instances	marked	positive	that	really	are	positive,	as	shown	in	Equation	7.22.

7.22	

Recall	 is	 the	 percentage	 of	 positive	 instances	 that	 were	 correctly	 identified.	 Recall	 is
equivalent	 to	 the	 TPR.	 Chapter	 9,	 “Advanced	 Analytical	 Theory	 and	 Methods:	 Text
Analysis,”	 discusses	 how	 to	 use	 precision	 and	 recall	 for	 evaluation	 of	 classifiers	 in	 the
context	of	text	analysis.

Given	the	confusion	matrix	from	Table	7.7,	the	metrics	can	be	calculated	as	follows:

These	 metrics	 show	 that	 for	 the	 bank	 marketing	 example,	 the	 naïve	 Bayes	 classifier
performs	well	with	accuracy	and	FPR	measures	and	relatively	well	on	precision.	However,
it	 performs	poorly	 on	TPR	and	FNR.	To	 improve	 the	 performance,	 try	 to	 include	more
attributes	in	the	datasets	to	better	distinguish	the	characteristics	of	the	records.	There	are
other	ways	 to	 evaluate	 the	 performance	 of	 a	 classifier	 in	 general,	 such	 as	N-fold	 cross
validation	(Chapter	6)	or	bootstrap	[14].

Chapter	6	has	introduced	the	ROC	curve,	which	is	a	common	tool	to	evaluate	classifiers.
The	 abbreviation	 stands	 for	 receiver	 operating	 characteristic,	 a	 term	 used	 in	 signal
detection	 to	characterize	 the	 trade-off	between	hit	 rate	and	 false-alarm	rate	over	a	noisy
channel.	A	ROC	curve	evaluates	the	performance	of	a	classifier	based	on	the	TP	and	FP,
regardless	of	other	factors	such	as	class	distribution	and	error	costs.	The	vertical	axis	is	the
True	Positive	Rate	(TPR),	and	the	horizontal	axis	is	the	False	Positive	Rate	(FPR).

As	seen	in	Chapter	6,	any	classifier	can	achieve	the	bottom	left	of	the	graph	where	TPR	=
FPR	=	0	by	classifying	everything	as	negative.	Similarly,	any	classifier	can	achieve	the	top
right	 of	 the	 graph	 where	 TPR	 =	 FPR	 =	 1	 by	 classifying	 everything	 as	 positive.	 If	 a
classifier	performs	“at	chance”	by	random	guessing	the	results,	it	can	achieve	any	point	on
the	diagonal	line	TPR=FPR	by	choosing	an	appropriate	threshold	of	positive/negative.	An
ideal	classifier	should	perfectly	separate	positives	from	negatives	and	thus	achieve	the	top-
left	corner	(TPR	=	1,	FPR	=	0).	The	ROC	curve	of	such	classifiers	goes	straight	up	from
TPR	=	FPR	=	0	to	the	top-left	corner	and	moves	straight	right	to	the	top-right	corner.	In
reality,	 it	 can	be	difficult	 to	achieve	 the	 top-left	 corner.	But	a	better	classifier	 should	be
closer	to	the	top	left,	separating	it	from	other	classifiers	that	are	closer	to	the	diagonal	line.

Related	to	the	ROC	curve	is	the	area	under	the	curve	(AUC).	The	AUC	is	calculated	by
measuring	the	area	under	the	ROC	curve.	Higher	AUC	scores	mean	the	classifier	performs
better.	The	score	can	range	from	0.5	(for	the	diagonal	line	TPR=FPR)	to	1.0	(with	ROC
passing	through	the	top-left	corner).

In	 the	bank	marketing	 example,	 the	 training	 set	 includes	2,000	 instances.	An	 additional

100	instances	are	included	as	the	testing	set.	Figure	7.10	shows	a	ROC	curve	of	the	naïve
Bayes	classifier	built	on	the	training	set	of	2,000	instances	and	tested	on	the	testing	set	of
100	 instances.	 The	 figure	 is	 generated	 by	 the	 following	 R	 script.	 The	 ROCR	 package	 is
required	 for	 plotting	 the	 ROC	 curve.	 The	 2,000	 instances	 are	 in	 a	 data	 frame	 called
banktrain,	and	the	additional	100	instances	are	in	a	data	frame	called	banktest.
library(ROCR)

#	training	set

banktrain	<-	read.table(“bank-sample.csv”,header=TRUE,sep=”,”)

#	drop	a	few	columns

drops	<-	c(“balance”,	“day”,	“campaign”,	“pdays”,	“previous”,	“month”)

banktrain	<-	banktrain	[,!(names(banktrain)	%in%	drops)]

#	testing	set

banktest	<-	read.table(“bank-sample-test.csv”,header=TRUE,sep=”,”)

banktest	<-	banktest	[,!(names(banktest)	%in%	drops)]

#	build	the	naïve	Bayes	classifier

nb_model	<-	naiveBayes(subscribed˜.,

						data=banktrain)

#	perform	on	the	testing	set

nb_prediction	<-	predict(nb_model,

							#	remove	column	“subscribed”

							banktest[,-ncol(banktest)],

							type=‘raw’)

score	<-	nb_prediction[,	c(“yes”)]

actual_class	<-	banktest$subscribed	==	‘yes’

pred	<-	prediction(score,	actual_class)

perf	<-	performance(pred,	“tpr”,	“fpr”)

plot(perf,	lwd=2,	xlab=“False	Positive	Rate	(FPR)”,

		ylab=“True	Positive	Rate	(TPR)”)

abline(a=0,	b=1,	col=“gray50”,	lty=3)

Figure	7.10	ROC	curve	of	the	naïve	Bayes	classifier	on	the	bank	marketing	dataset

The	following	R	code	shows	that	the	corresponding	AUC	score	of	the	ROC	curve	is	about
0.915.
auc	<-	performance(pred,	“auc”)

auc	<-	unlist(slot(auc,	“y.values”))

auc

[1]	0.9152196

7.4	Additional	Classification	Methods
Besides	the	two	classifiers	introduced	in	this	chapter,	several	other	methods	are	commonly
used	 for	 classification,	 including	 bagging	 [15],	 boosting	 [5],	 random	 forest	 [4],	 and
support	 vector	 machines	 (SVM)	 [16].	 Bagging,	 boosting,	 and	 random	 forest	 are	 all
examples	 of	 ensemble	 methods	 that	 use	 multiple	 models	 to	 obtain	 better	 predictive
performance	than	can	be	obtained	from	any	of	the	constituent	models.

Bagging	 (or	 bootstrap	 aggregating)	 [15]	 uses	 the	 bootstrap	 technique	 that	 repeatedly
samples	with	replacement	from	a	dataset	according	to	a	uniform	probability	distribution.
“With	replacement”	means	that	when	a	sample	is	selected	for	a	training	or	testing	set,	the
sample	is	still	kept	in	the	dataset	and	may	be	selected	again.	Because	the	sampling	is	with
replacement,	some	samples	may	appear	several	times	in	a	training	or	testing	set,	whereas
others	may	be	absent.	A	model	or	base	classifier	 is	 trained	separately	on	each	bootstrap
sample,	 and	 a	 test	 sample	 is	 assigned	 to	 the	 class	 that	 received	 the	 highest	 number	 of
votes.

Similar	 to	bagging,	boosting	(or	AdaBoost)	[17]	uses	votes	for	classification	to	combine
the	 output	 of	 individual	 models.	 In	 addition,	 it	 combines	 models	 of	 the	 same	 type.
However,	 boosting	 is	 an	 iterative	 procedure	 where	 a	 new	 model	 is	 influenced	 by	 the
performances	of	those	models	built	previously.	Furthermore,	boosting	assigns	a	weight	to
each	training	sample	that	reflects	its	importance,	and	the	weight	may	adaptively	change	at
the	 end	 of	 each	 boosting	 round.	Bagging	 and	 boosting	 have	 been	 shown	 to	 have	 better
performances	[5]	than	a	decision	tree.

Random	 forest	 [4]	 is	 a	 class	of	 ensemble	methods	using	decision	 tree	 classifiers.	 It	 is	 a
combination	 of	 tree	 predictors	 such	 that	 each	 tree	 depends	 on	 the	 values	 of	 a	 random
vector	sampled	independently	and	with	the	same	distribution	for	all	trees	in	the	forest.	A
special	case	of	random	forest	uses	bagging	on	decision	trees,	where	samples	are	randomly
chosen	with	replacement	from	the	original	training	set.

SVM	 [16]	 is	 another	 common	 classification	 method	 that	 combines	 linear	 models	 with
instance-based	 learning	 techniques.	 Support	 vector	 machines	 select	 a	 small	 number	 of
critical	 boundary	 instances	 called	 support	 vectors	 from	 each	 class	 and	 build	 a	 linear
decision	 function	 that	 separates	 them	 as	 widely	 as	 possible.	 SVM	 by	 default	 can
efficiently	 perform	 linear	 classifications	 and	 can	 be	 configured	 to	 perform	 nonlinear
classifications	as	well.

Summary
This	 chapter	 focused	 on	 two	 classification	methods:	 decision	 trees	 and	 naïve	 Bayes.	 It
discussed	 the	 theory	 behind	 these	 classifiers	 and	 used	 a	 bank	 marketing	 example	 to
explain	how	the	methods	work	in	practice.	These	classifiers	along	with	logistic	regression
(Chapter	6)	are	often	used	for	the	classification	of	data.	As	this	book	has	discussed,	each
of	these	methods	has	its	own	advantages	and	disadvantages.	How	does	one	pick	the	most
suitable	method	 for	 a	 given	 classification	 problem?	 Table	 7.8	 offers	 a	 list	 of	 things	 to
consider	when	selecting	a	classifier.

Table	7.8	Choosing	a	Suitable	Classifier

Concerns Recommended
Method(s)

Output	of	the	classification	should	include	class	probabilities	in
addition	to	the	class	labels.

Logistic	regression,
decision	tree

Analysts	want	to	gain	an	insight	into	how	the	variables	affect	the
model.

Logistic	regression,
decision	tree

The	problem	is	high	dimensional. Naïve	Bayes

Some	of	the	input	variables	might	be	correlated. Logistic	regression,
decision	tree

Some	of	the	input	variables	might	be	irrelevant. Decision	tree,	naïve
Bayes

The	data	contains	categorical	variables	with	a	large	number	of
levels.

Decision	tree,	naïve
Bayes

The	data	contains	mixed	variable	types. Logistic	regression,
decision	tree

There	is	nonlinear	data	or	discontinuities	in	the	input	variables
that	would	affect	the	output. Decision	tree

After	 the	 classification,	 one	 can	 use	 a	 few	 evaluation	 tools	 to	 measure	 how	 well	 a
classifier	has	performed	or	compare	the	performances	of	multiple	classifiers.	These	tools
include	confusion	matrix,	TPR,	FPR,	FNR,	precision,	recall,	ROC	curves,	and	AUC.

In	addition	 to	 the	decision	 trees	and	naïve	Bayes,	other	methods	are	commonly	used	as
classifiers.	These	methods	include	but	are	not	limited	to	bagging,	boosting,	random	forest,
and	SVM.

Exercises
	
1.	 For	a	binary	classification,	describe	the	possible	values	of	entropy.	On	what

conditions	does	entropy	reach	its	minimum	and	maximum	values?
2.	 In	a	decision	tree,	how	does	the	algorithm	pick	the	attributes	for	splitting?
3.	 John	went	to	see	the	doctor	about	a	severe	headache.	The	doctor	selected	John	at

random	to	have	a	blood	test	for	swine	flu,	which	is	suspected	to	affect	1	in	5,000
people	in	this	country.	The	test	is	99%	accurate,	in	the	sense	that	the	probability	of	a
false	positive	is	1%.	The	probability	of	a	false	negative	is	zero.	John’s	test	came	back
positive.	What	is	the	probability	that	John	has	swine	flu?

4.	 Which	classifier	is	considered	computationally	efficient	for	high-dimensional
problems?	Why?

5.	 A	data	science	team	is	working	on	a	classification	problem	in	which	the	dataset
contains	many	correlated	variables,	and	most	of	them	are	categorical	variables.
Which	classifier	should	the	team	consider	using?	Why?

6.	 A	data	science	team	is	working	on	a	classification	problem	in	which	the	dataset
contains	many	correlated	variables,	and	most	of	them	are	continuous.	The	team	wants
the	model	to	output	the	probabilities	in	addition	to	the	class	labels.	Which	classifier
should	the	team	consider	using?	Why?

7.	 Consider	the	following	confusion	matrix:

Predicted	Class Total
Good Bad

Actual	Class Good 671 29 300
Bad 38 262 700

Total 709 291 1000

What	are	the	true	positive	rate,	false	positive	rate,	and	false	negative	rate?

Bibliography
	
1.	 [1]	M.	Thomas,	B.	Pang,	and	L.	Lee,	“Get	Out	the	Vote:	Determining	Support	or

Opposition	from	Congressional	Floor-Debate	Transcripts,”	in	Proceedings	of	the
2006	Conference	on	Empirical	Methods	in	Natural	Language	Processing,	Sydney,
Australia,	2006.

2.	 [2]	M.	Shouman,	T.	Turner,	and	R.	Stocker,	“Using	Decision	Tree	for	Diagnosing
Heart	Disease	Patients,”	in	Australian	Computer	Society,	Inc.,	Ballarat,	Australia,	in
Proceedings	of	the	Ninth	Australasian	Data	Mining	Conference	(AusDM	‘11).

3.	 [3]	I.	Androutsopoulos,	J.	Koutsias,	K.	V.	Chandrinos,	G.	Paliouras,	and	C.	D.
Spyropoulos,	“An	Evaluation	of	NaÏve	Bayesian	Anti-Spam	Filtering,”	in
Proceedings	of	the	Workshop	on	Machine	Learning	in	the	New	Information	Age,
Barcelona,	Spain,	2000.

4.	 [4]	L.	Breiman,	“Random	Forests,”	Machine	Learning,	vol.	45,	no.	1,	pp.	5–32,	2001.

5.	 [5]	J.	R.	Quinlan,	“Bagging,	Boosting,	and	C4.	5,”	AAAI/IAAI,	vol.	1,	1996.

6.	 [6]	S.	Moro,	P.	Cortez,	and	R.	Laureano,	“Using	Data	Mining	for	Bank	Direct
Marketing:	An	Application	of	the	CRISP-DM	Methodology,”	in	Proceedings	of	the
European	Simulation	and	Modelling	Conference	-	ESM‘2011,	Guimaraes,	Portugal,
2011.

7.	 [7]	J.	R.	Quinlan,	“Induction	of	Decision	Trees,”	Machine	Learning,	vol.	1,	no.	1,	pp.
81–106,	1986.

8.	 [8]	J.	R.	Quinlan,	C4.	5:	Programs	for	Machine	Learning,	Morgan	Kaufmann,	1993.

9.	 [9]	L.	Breiman,	J.	H.	Friedman,	R.	A.	Olshen,	and	C.	J.	Stone,	Classification	and
Regression	Trees,	Belmont,	CA:	Wadsworth	International	Group,	1984.

10.	 [10]	T.	M.	Mitchell,	“Decision	Tree	Learning,”	in	Machine	Learning,	New	York,	NY,
USA,	McGraw-Hill,	Inc.,	1997,	p.	68.

11.	 [11]	C.	Phua,	V.	C.	S.	Lee,	S.	Kate,	and	R.	W.	Gayler,	“A	Comprehensive	Survey	of
Data	Mining-Based	Fraud	Detection,”	CoRR,	vol.	abs/1009.6119,	2010.

12.	 [12]	R.	Bhowmik,	“Detecting	Auto	Insurance	Fraud	by	Data	Mining	Techniques,”
Journal	of	Emerging	Trends	in	Computing	and	Information	Sciences,	vol.	2,	no.	4,
pp.	156–162,	2011.

13.	 [13]	D.	Michie,	D.	J.	Spiegelhalter,	and	C.	C.	Taylor,	Machine	Learning,	Neural	and
Statistical	Classification,	New	York:	Ellis	Horwood,	1994.

14.	 [14]	I.	H.	Witten,	E.	Frank,	and	M.	A.	Hall,	“The	Bootstrap,”	in	Data	Mining,
Burlington,	Massachusetts,	Morgan	Kaufmann,	2011,	pp.	155–156.

15.	 [15]	L.	Breiman,	“Bagging	Predictors,”	Machine	Learning,	vol.	24,	no.	2,	pp.	123–
140,	1996.

16.	 [16]	N.	Cristianini	and	J.	Shawe-Taylor,	An	Introduction	to	Support	Vector	Machines
and	Other	Kernel-Based	Learning	Methods,	Cambridge,	United	Kingdom:
Cambridge	university	press,	2000.

17.	 [17]	Y.	Freund	and	R.	E.	Schapire,	“A	Decision-Theoretic	Generalization	of	On-Line
Learning	and	an	Application	to	Boosting,”	Journal	of	Computer	and	System
Sciences,	vol.	55,	no.	1,	pp.	119–139,	1997.

Chapter	8
Advanced	Analytical	Theory	and	Methods:	Time	Series
Analysis

Key	Concepts
1.	 ACF
2.	 ARIMA
3.	 Autoregressive
4.	 Moving	average
5.	 PACF
6.	 Stationary
7.	 Time	series

This	chapter	examines	 the	 topic	of	 time	series	analysis	and	its	applications.	Emphasis	 is
placed	on	identifying	the	underlying	structure	of	the	time	series	and	fitting	an	appropriate
Autoregressive	Integrated	Moving	Average	(ARIMA)	model.

8.1	Overview	of	Time	Series	Analysis
Time	series	analysis	attempts	to	model	the	underlying	structure	of	observations	taken	over
time.	A	 time	series,	 denoted	 	 ,	 is	 an	 ordered	 sequence	 of	 equally	 spaced	 values
over	time.	For	example,	Figure	8.1	provides	a	plot	of	the	monthly	number	of	international
airline	passengers	over	a	12-year	period.

Figure	8.1	Monthly	international	airline	passengers

In	 this	 example,	 the	 time	 series	 consists	 of	 an	 ordered	 sequence	 of	 144	 values.	 The
analyses	presented	in	this	chapter	are	limited	to	equally	spaced	time	series	of	one	variable.
Following	are	the	goals	of	time	series	analysis:

	
Identify	and	model	the	structure	of	the	time	series.
Forecast	future	values	in	the	time	series.

Time	series	 analysis	has	many	applications	 in	 finance,	 economics,	biology,	 engineering,
retail,	and	manufacturing.	Here	are	a	few	specific	use	cases:

	
Retail	sales:	For	various	product	lines,	a	clothing	retailer	is	looking	to	forecast	future
monthly	sales.	These	forecasts	need	to	account	for	the	seasonal	aspects	of	the
customer’s	purchasing	decisions.	For	example,	in	the	northern	hemisphere,	sweater
sales	are	typically	brisk	in	the	fall	season,	and	swimsuit	sales	are	the	highest	during
the	late	spring	and	early	summer.	Thus,	an	appropriate	time	series	model	needs	to
account	for	fluctuating	demand	over	the	calendar	year.
Spare	parts	planning:	Companies’	service	organizations	have	to	forecast	future
spare	part	demands	to	ensure	an	adequate	supply	of	parts	to	repair	customer	products.
Often	the	spares	inventory	consists	of	thousands	of	distinct	part	numbers.	To	forecast
future	demand,	complex	models	for	each	part	number	can	be	built	using	input
variables	such	as	expected	part	failure	rates,	service	diagnostic	effectiveness,
forecasted	new	product	shipments,	and	forecasted	trade-ins/decommissions.
However,	time	series	analysis	can	provide	accurate	short-term	forecasts	based	simply
on	prior	spare	part	demand	history.

Stock	trading:	Some	high-frequency	stock	traders	utilize	a	technique	called	pairs
trading.	In	pairs	trading,	an	identified	strong	positive	correlation	between	the	prices
of	two	stocks	is	used	to	detect	a	market	opportunity.	Suppose	the	stock	prices	of
Company	A	and	Company	B	consistently	move	together.	Time	series	analysis	can	be
applied	to	the	difference	of	these	companies’	stock	prices	over	time.	A	statistically
larger	than	expected	price	difference	indicates	that	it	is	a	good	time	to	buy	the	stock
of	Company	A	and	sell	the	stock	of	Company	B,	or	vice	versa.	Of	course,	this	trading
approach	depends	on	the	ability	to	execute	the	trade	quickly	and	be	able	to	detect
when	the	correlation	in	the	stock	prices	is	broken.	Pairs	trading	is	one	of	many
techniques	that	falls	into	a	trading	strategy	called	statistical	arbitrage.

8.1.1	Box-Jenkins	Methodology
In	this	chapter,	a	time	series	consists	of	an	ordered	sequence	of	equally	spaced	values	over
time.	Examples	of	a	time	series	are	monthly	unemployment	rates,	daily	website	visits,	or
stock	prices	every	second.	A	time	series	can	consist	of	the	following	components:

	
Trend
Seasonality
Cyclic
Random

The	 trend	 refers	 to	 the	 long-term	 movement	 in	 a	 time	 series.	 It	 indicates	 whether	 the
observation	values	are	increasing	or	decreasing	over	time.	Examples	of	trends	are	a	steady
increase	in	sales	month	over	month	or	an	annual	decline	of	fatalities	due	to	car	accidents.

The	seasonality	 component	 describes	 the	 fixed,	 periodic	 fluctuation	 in	 the	 observations
over	 time.	 As	 the	 name	 suggests,	 the	 seasonality	 component	 is	 often	 related	 to	 the
calendar.	For	example,	monthly	retail	sales	can	fluctuate	over	the	year	due	to	the	weather
and	holidays.

A	cyclic	component	also	refers	to	a	periodic	fluctuation,	but	one	that	is	not	as	fixed	as	in
the	 case	 of	 a	 seasonality	 component.	 For	 example,	 retails	 sales	 are	 influenced	 by	 the
general	state	of	the	economy.	Thus,	a	retail	sales	time	series	can	often	follow	the	lengthy
boom-bust	cycles	of	the	economy.

After	accounting	for	the	other	three	components,	the	random	component	is	what	remains.
Although	noise	is	certainly	part	of	this	random	component,	there	is	often	some	underlying
structure	to	this	random	component	that	needs	to	be	modeled	to	forecast	future	values	of	a
given	time	series.

Developed	by	George	Box	and	Gwilym	Jenkins,	 the	Box-Jenkins	methodology	 for	 time
series	analysis	involves	the	following	three	main	steps:

	
1.	 Condition	data	and	select	a	model.

Identify	and	account	for	any	trends	or	seasonality	in	the	time	series.

Examine	the	remaining	time	series	and	determine	a	suitable	model.
2.	 Estimate	the	model	parameters.
3.	 Assess	the	model	and	return	to	Step	1,	if	necessary.

The	 primary	 focus	 of	 this	 chapter	 is	 to	 use	 the	 Box-Jenkins	 methodology	 to	 apply	 an
ARIMA	model	to	a	given	time	series.

8.2	ARIMA	Model
To	 fully	 explain	 an	 ARIMA	 (Autoregressive	 Integrated	 Moving	 Average)	 model,	 this
section	describes	the	model’s	various	parts	and	how	they	are	combined.	As	stated	in	the
first	 step	 of	 the	 Box-Jenkins	 methodology,	 it	 is	 necessary	 to	 remove	 any	 trends	 or
seasonality	in	the	time	series.	This	step	is	necessary	to	achieve	a	time	series	with	certain
properties	 to	which	 autoregressive	 and	moving	 average	models	 can	 be	 applied.	 Such	 a
time	series	is	known	as	a	stationary	time	series.	A	time	series,	 ,,	is	a	stationary
time	series	if	the	following	three	conditions	are	met:

	
(a)The	expected	value	(mean)	of	 	is	a	constant	for	all	values	of	t.
(b)The	variance	of	 	is	finite.
(c)The	covariance	of	 	depends	only	on	the	value	of	 ,	…for	all	 .

The	covariance	of	 	is	a	measure	of	how	the	two	variables,	 ,	vary	together.
It	is	expressed	in	Equation	8.1.

8.1	

If	 two	variables	 are	 independent	 of	 each	other,	 their	 covariance	 is	 zero.	 If	 the	variables
change	 together	 in	 the	 same	 direction,	 the	 variables	 have	 a	 positive	 covariance.
Conversely,	if	the	variables	change	together	in	the	opposite	direction,	the	variables	have	a
negative	covariance.

For	a	stationary	time	series,	by	condition	(a),	the	mean	is	a	constant,	say	 .	So,	for	a	given
stationary	 sequence,	 ,	 the	 covariance	 notation	 can	 be	 simplified	 to	 what’s	 shown	 in
Equation	8.2.

8.2	

By	part	(c),	the	covariance	between	two	points	in	the	time	series	can	be	nonzero,	as	long
as	the	value	of	the	covariance	is	only	a	function	of	h.	Equation	8.3	is	an	example	for	 .

8.3	

It	is	important	to	note	that	for	 ,	the	 	for	all	t.	Because	the	 ,
by	condition	(b),	the	variance	of	 	is	a	constant	for	all	t.	So	the	constant	variance	coupled
with	part	(a),	 ,	for	all	t	and	some	constant	 ,	suggests	that	a	stationary	time	series
can	 look	 like	 Figure	 8.2.	 In	 this	 plot,	 the	 points	 appear	 to	 be	 centered	 about	 a	 fixed
constant,	zero,	and	the	variance	appears	to	be	somewhat	constant	over	time.

Figure	8.2	A	plot	of	a	stationary	series

8.2.1	Autocorrelation	Function	(ACF)
Although	there	 is	not	an	overall	 trend	in	 the	 time	series	plotted	 in	Figure	8.2,	 it	appears
that	each	point	 is	 somewhat	dependent	on	 the	past	points.	The	difficulty	 is	 that	 the	plot
does	 not	 provide	 insight	 into	 the	 covariance	 of	 the	 variables	 in	 the	 time	 series	 and	 its
underlying	 structure.	 The	 plot	 of	autocorrelation	 function	 (ACF)	 provides	 this	 insight.
For	a	stationary	time	series,	the	ACF	is	defined	as	shown	in	Equation	8.4.

8.4	

Because	the	cov(0)	is	the	variance,	the	ACF	is	analogous	to	the	correlation	function	of	two
variables,	 ,	and	the	value	of	the	ACF	falls	between	–1	and	1.	Thus,	the	closer	the
absolute	value	of	ACF(h)	is	to	1,	the	more	useful	 	.

Using	the	same	dataset	plotted	in	Figure	8.2,	the	plot	of	the	ACF	is	provided	in	Figure	8.3.

Figure	8.3	Autocorrelation	function	(ACF)

By	convention,	the	quantity	h	in	the	ACF	is	referred	to	as	the	lag,	the	difference	between

the	time	points	t	and	t	+	h.	At	lag	0,	the	ACF	provides	the	correlation	of	every	point	with
itself.	 So	ACF(0)	 always	 equals	 1.	According	 to	 the	ACF	 plot,	 at	 lag	 1	 the	 correlation
between	 	 is	 approximately	 0.9,	which	 is	 very	 close	 to	 1.	So	 	 appears	 to	 be	 a
good	predictor	of	the	value	of	 .	Because	ACF(2)	is	around	0.8,	 	also	appears	to	be	a
good	predictor	of	the	value	of	 .	A	similar	argument	could	be	made	for	lag	3	to	lag	8.	(All
the	autocorrelations	are	greater	than	0.6.)	In	other	words,	a	model	can	be	considered	that
would	 express	 	 as	 a	 linear	 sum	of	 its	 previous	8	 terms.	Such	 a	model	 is	 known	as	 an
autoregressive	model	of	order	8.

8.2.2	Autoregressive	Models
For	 a	 stationary	 time	 series,	 	 ,	 an	 autoregressive	 model	 of	 order	 p,	 denoted
AR(p),	is	expressed	as	shown	in	Equation	8.5:

8.5	

where

	
1.	 	is	a	constant	for	a	nonzero-centered	time	series:
2.	 	is	a	constant	for	j	=	1,	2,	…,	p
3.	 	is	the	value	of	the	time	series	at	time	
4.	
5.	 	for	all	

Thus,	a	particular	point	in	the	time	series	can	be	expressed	as	a	linear	combination	of	the
prior	p	values,	 	for	j	=	1,	2,	…p,	of	the	time	series	plus	a	random	error	term,	 .	In	this
definition,	the	 	time	series	is	often	called	a	white	noise	process	and	is	used	to	represent
random,	independent	fluctuations	that	are	part	of	the	time	series.

From	 the	 earlier	 example	 in	 Figure	8.3,	 the	 autocorrelations	 are	 quite	 high	 for	 the	 first
several	 lags.	 Although	 it	 appears	 that	 an	 AR(8)	 model	 might	 be	 a	 good	 candidate	 to
consider	for	the	given	dataset,	examining	an	AR(1)	model	provides	further	insight	into	the
ACF	and	the	appropriate	value	of	p	to	choose.	For	an	AR(1)	model,	centered	around	 ,
Equation	8.5	simplifies	to	Equation	8.6.

8.6	

Based	on	Equation	8.6,	it	is	evident	that	 .	Thus,	substituting	for	 	yields
Equation	8.7.

8.7	

Therefore,	 in	a	 time	series	 that	 follows	an	AR(1)	model,	 considerable	autocorrelation	 is
expected	at	lag	2.	As	this	substitution	process	is	repeated,	 	can	be	expressed	as	a	function
of	 	for	 	…and	a	sum	of	the	error	terms.	This	observation	means	that	even	in	the
simple	AR(1)	model,	there	will	be	considerable	autocorrelation	with	the	larger	lags	even
though	those	lags	are	not	explicitly	included	in	the	model.	What	is	needed	is	a	measure	of
the	 autocorrelation	 between	 	 for	 h	 =	 1,	 2,	 3…	with	 the	 effect	 of	 the	

values	excluded	from	the	measure.	The	partial	autocorrelation	function	(PACF)	provides
such	a	measure	and	is	expressed	as	shown	in	Equation	8.8.

8.8	

where

	
1.	 ,

	,	and
2.	 the	 	.

In	other	words,	after	linear	regression	is	used	to	remove	the	effect	of	the	variables	between
	on	 ,	 the	PACF	 is	 the	correlation	of	what	 remains.	For	 ,	 there	 are	no

variables	between	 .	So	the	PACF(1)	equals	ACF(1).	Although	the	computation	of
the	 PACF	 is	 somewhat	 complex,	 many	 software	 tools	 hide	 this	 complexity	 from	 the
analyst.

For	the	earlier	example,	the	PACF	plot	in	Figure	8.4	illustrates	that	after	lag	2,	the	value	of
the	 PACF	 is	 sharply	 reduced.	 Thus,	 after	 removing	 the	 effects	 of	 ,	 the	 partial
correlation	between	 	is	relatively	small.	Similar	observations	can	be	made	for	h	=
4,	5,	….	Such	a	plot	indicates	that	an	AR(2)	is	a	good	candidate	model	for	the	time	series
plotted	in	Figure	8.2.	In	fact,	the	time	series	data	for	this	example	was	randomly	generated
based	on	 	where	 	.

Figure	8.4	Partial	autocorrelation	function	(PACF)	plot

Because	 the	ACF	and	PACF	are	based	on	correlations,	negative	and	positive	values	are
possible.	Thus,	the	magnitudes	of	the	functions	at	the	various	lags	should	be	considered	in
terms	of	absolute	values.

8.2.3	Moving	Average	Models
For	a	time	series,	 ,	centered	at	zero,	a	moving	average	model	of	order	q,	denoted	MA(q),
is	expressed	as	shown	in	Equation	8.9.

8.9	

where

	
1.	 	is	a	constant	for	k	=	1,	2,	…,	q
2.	
3.	 	for	all	t

In	an	MA(q)	model,	the	value	of	a	time	series	is	a	linear	combination	of	the	current	white
noise	term	and	the	prior	q	white	noise	terms.	So	earlier	random	shocks	directly	affect	the
current	value	of	 the	time	series.	For	MA(q)	models,	 the	behavior	of	 the	ACF	and	PACF
plots	 are	 somewhat	 swapped	 from	 the	 behavior	 of	 these	 plots	 for	AR(p)	models.	 For	 a
simulated	MA(3)	time	series	of	the	form	 	where	 ,	Figure
8.5	provides	the	scatterplot	of	the	simulated	data	over	time.

Figure	8.5	Scatterplot	of	a	simulated	MA(3)	time	series

Figure	 8.6	 provides	 the	 ACF	 plot	 for	 the	 simulated	 data.	 Again,	 the	 ACF(0)	 equals	 1,
because	any	variable	is	perfectly	correlated	with	itself.	At	lags	1,	2,	and	3,	the	value	of	the
ACF	 is	 relatively	 large	 in	 absolute	 value	 compared	 to	 the	 subsequent	 terms.	 In	 an
autoregressive	 model,	 the	 ACF	 slowly	 decays,	 but	 for	 an	 MA(3)	 model,	 the	 ACF
somewhat	 abruptly	 cuts	 off	 after	 lag	 3.	 In	 general,	 this	 pattern	 can	 be	 extended	 to	 any
MA(q)	model.

Figure	8.6	ACF	plot	of	a	simulated	MA(3)	time	series

To	 understand	 why	 this	 phenomenon	 occurs,	 it	 is	 useful	 to	 examine	 Equations	 8.10
through	8.14	for	an	MA(3)	time	series	model:

8.10	

8.11	

8.12	

8.13	

8.14	

Because	the	expression	of	 	shares	specific	white	noise	variables	with	the	expressions	for	
	 through	 ,	 inclusive,	 those	 three	 variables	 are	 correlated	 to	 .	 However,	 the

expression	of	 	in	Equation	8.10	does	not	share	white	noise	variables	with	 	in	Equation
8.14.	So	 the	 theoretical	 correlation	between	 	 and	 	 is	 zero.	Of	 course,	when	dealing
with	 a	particular	dataset,	 the	 theoretical	 autocorrelations	 are	unknown,	but	 the	observed
autocorrelations	 should	 be	 close	 to	 zero	 for	 lags	 greater	 than	 q	 when	working	with	 an
MA(q)	model.

8.2.4	ARMA	and	ARIMA	Models
In	general,	 the	data	 scientist	 does	not	 have	 to	 choose	between	 an	AR(p)	 and	 an	MA(q)
model	 to	 describe	 a	 time	 series.	 In	 fact,	 it	 is	 often	 useful	 to	 combine	 these	 two
representations	into	one	model.	The	combination	of	these	two	models	for	a	stationary	time
series	 results	 in	 an	 Autoregressive	 Moving	 Average	 model,	 ARMA(p,q),	 which	 is
expressed	as	shown	in	Equation	8.15.

8.15	

1.	 where	 	is	a	constant	for	a	nonzero-centered	time	series
2.	 	is	a	constant	for	j	=	1,	2,	…,	p
3.	

4.	 	is	a	constant	for	k	=	1,	2,	…,	q
5.	
6.	 	for	all	t

If	 ,	 then	 the	 ARMA(p,q)	 model	 is	 simply	 an	 AR(p)	 model.	 Similarly,	 if	
,	then	the	ARMA(p,q)	model	is	an	MA(q)	model.

To	apply	an	ARMA	model	properly,	 the	 time	series	must	be	a	 stationary	one.	However,
many	time	series	exhibit	some	trend	over	time.	Figure	8.7	illustrates	a	time	series	with	an
increasing	linear	trend	over	time.	Since	such	a	time	series	does	not	meet	the	requirement
of	a	constant	expected	value	 (mean),	 the	data	needs	 to	be	adjusted	 to	 remove	 the	 trend.
One	transformation	option	is	to	perform	a	regression	analysis	on	the	time	series	and	then
to	subtract	the	value	of	the	fitted	regression	line	from	each	observed	y-value.

Figure	8.7	A	time	series	with	a	trend

If	detrending	using	a	linear	or	higher	order	regression	model	does	not	provide	a	stationary
series,	a	second	option	is	to	compute	the	difference	between	successive	y-values.	This	is
known	as	differencing.	In	other	words,	for	the	n	values	in	a	given	time	series	compute	the
differences	as	shown	in	Equation	8.16.

8.16	

The	mean	 of	 the	 time	 series	 plotted	 in	 Figure	8.8	 is	 certainly	 not	 a	 constant.	Applying
differencing	to	the	time	series	results	in	the	plot	in	Figure	8.9.	This	plot	illustrates	a	time
series	with	a	constant	mean	and	a	fairly	constant	variance	over	time.

Figure	8.8	Time	series	for	differencing	example

Figure	8.9	Detrended	time	series	using	differencing

If	 the	 differenced	 series	 is	 not	 reasonably	 stationary,	 applying	 differencing	 additional
times	may	help.	Equation	8.17	provides	the	twice	differenced	time	series	for	t	=	3,	4,	…n.

8.17	

Successive	 differencing	 can	 be	 applied,	 but	 over-differencing	 should	 be	 avoided.	 One
reason	 is	 that	 over-differencing	may	 unnecessarily	 increase	 the	 variance.	 The	 increased
variance	can	be	detected	by	plotting	 the	possibly	over-differenced	values	 and	observing
that	the	spread	of	the	values	is	much	larger,	as	seen	in	Figure	8.10	after	differencing	the
values	of	y	twice.

Figure	8.10	Twice	differenced	series

Because	 the	 need	 to	make	 a	 time	 series	 stationary	 is	 common,	 the	 differencing	 can	 be
included	 (integrated)	 into	 the	 ARMA	 model	 definition	 by	 defining	 the	Autoregressive
Integrated	Moving	Average	model,	denoted	ARIMA(p,d,q).	The	structure	of	the	ARIMA
model	is	identical	to	the	expression	in	Equation	8.15,	but	the	ARMA(p,q)	model	is	applied
to	the	time	series,	 ,	after	applying	differencing	d	times.

Additionally,	 it	 is	 often	 necessary	 to	 account	 for	 seasonal	 patterns	 in	 time	 series.	 For
example,	in	the	retail	sales	use	case	example	in	Section	8.1,	monthly	clothing	sales	track
closely	with	the	calendar	month.	Similar	to	the	earlier	option	of	detrending	a	series	by	first
applying	 linear	 regression,	 the	 seasonal	 pattern	 could	be	determined	and	 the	 time	 series
appropriately	 adjusted.	 An	 alternative	 is	 to	 use	 a	 seasonal	 autoregressive	 integrated
moving	average	model,	denoted	ARIMA(p,d,q)	 	(P,D,Q)s	where:

	
p,	d,	and	q	are	the	same	as	defined	previously.
s	denotes	the	seasonal	period.
P	is	the	number	of	terms	in	the	AR	model	across	the	s	periods.
D	is	the	number	of	differences	applied	across	the	s	periods.
Q	is	the	number	of	terms	in	the	MA	model	across	the	s	periods.

For	a	time	series	with	a	seasonal	pattern,	following	are	typical	values	of	s:

	
52	for	weekly	data
12	for	monthly	data
7	for	daily	data

The	 next	 section	 presents	 a	 seasonal	ARIMA	example	 and	 describes	 several	 techniques
and	approaches	to	identify	the	appropriate	model	and	forecast	the	future.

8.2.5	Building	and	Evaluating	an	ARIMA	Model

For	a	large	country,	the	monthly	gasoline	production	measured	in	millions	of	barrels	has
been	obtained	for	the	past	240	months	(20	years).	A	market	research	firm	requires	some
short-term	 gasoline	 production	 forecasts	 to	 assess	 the	 petroleum	 industry’s	 ability	 to
deliver	future	gasoline	supplies	and	the	effect	on	gasoline	prices.
library(forecast)

#	read	in	gasoline	production	time	series

#	monthly	gas	production	expressed	in	millions	of	barrels

gas_prod_input	<-	as.data.frame(read.csv(“c:/data/gas_prod.csv”))

#	create	a	time	series	object

gas_prod	<-	ts(gas_prod_input[,2])

#examine	the	time	series

plot(gas_prod,	xlab	=	“Time	(months)”,

		ylab	=	“Gasoline	production	(millions	of	barrels)”)

Using	R,	the	dataset	is	plotted	in	Figure	8.11.

Figure	8.11	Monthly	gasoline	production

In	R,	the	ts()	function	creates	a	time	series	object	from	a	vector	or	a	matrix.	The	use	of
time	 series	 objects	 in	 R	 simplifies	 the	 analysis	 by	 providing	 several	 methods	 that	 are
tailored	specifically	for	handling	equally	time	spaced	data	series.	For	example,	the	plot()
function	does	not	require	an	explicitly	specified	variable	for	the	x-axis.

To	 apply	 an	ARMA	model,	 the	 dataset	 needs	 to	 be	 a	 stationary	 time	 series.	 Using	 the
diff()	 function,	 the	 gasoline	 production	 time	 series	 is	 differenced	 once	 and	 plotted	 in
Figure	8.12.
plot(diff(gas_prod))

abline(a=0,	b=0)

Figure	8.12	Differenced	gasoline	production	time	series

The	differenced	time	series	has	a	constant	mean	near	zero	with	a	fairly	constant	variance
over	time.	Thus,	a	stationary	time	series	has	been	obtained.	Using	the	following	R	code,
the	ACF	and	PACF	plots	for	the	differenced	series	are	provided	in	Figures	8.13	and	8.14,
respectively.
#	examine	ACF	and	PACF	of	differenced	series

acf(diff(gas_prod),	xaxp	=	c(0,	48,	4),	lag.max=48,	main=””)

pacf(diff(gas_prod),	xaxp	=	c(0,	48,	4),	lag.max=48,	main=””)

Figure	8.13	ACF	of	the	differenced	gasoline	time	series

Figure	8.14	PACF	of	the	differenced	gasoline	time	series

The	dashed	lines	provide	upper	and	lower	bounds	at	a	95%	significance	level.	Any	value
of	 the	 ACF	 or	 PACF	 outside	 of	 these	 bounds	 indicates	 that	 the	 value	 is	 significantly
different	from	zero.

Figure	8.13	 shows	 several	 significant	ACF	values.	 The	 slowly	 decaying	ACF	values	 at
lags	12,	24,	36,	and	48	are	of	particular	interest.	A	similar	behavior	in	the	ACF	was	seen
in	Figure	8.3,	but	for	lags	1,	2,	3,…	Figure	8.13	indicates	a	seasonal	autoregressive	pattern
every	12	months.	Examining	the	PACF	plot	 in	Figure	8.14,	 the	PACF	value	at	 lag	12	 is
quite	large,	but	the	PACF	values	are	close	to	zero	at	lags	24,	36,	and	48.	Thus,	a	seasonal
AR(1)	model	with	period	=	12	will	be	considered.	It	is	often	useful	to	address	the	seasonal
portion	 of	 the	 overall	 ARMA	 model	 before	 addressing	 the	 nonseasonal	 portion	 of	 the
model.

The	arima()	function	in	R	is	used	to	fit	a	(0,1,0)	×	(1,0,0)12	model.	The	analysis	is	applied
to	the	original	time	series	variable,	gas_prod.	The	differencing,	d	=	1,	is	specified	by	the
order	=	c(0,1,0)	term.
arima_1	<-	arima	(gas_prod,

					order=c(0,1,0),

					seasonal	=	list(order=c(1,0,0),period=12))

arima_1

Series:	gas_prod

ARIMA(0,1,0)(1,0,0)[12]

Coefficients:

		sar1

		0.8335

s.e.	0.0324

sigma^2	estimated	as	37.29:	log	likelihood=-778.69

AIC=1561.38	AICc=1561.43	BIC=1568.33

The	value	of	the	coefficient	for	the	seasonal	AR(1)	model	is	estimated	to	be	0.8335	with	a
standard	error	of	0.0324.	Because	the	estimate	is	several	standard	errors	away	from	zero,
this	coefficient	is	considered	significant.	The	output	from	this	first	pass	ARIMA	analysis
is	 stored	 in	 the	variable	arima_1,	which	 contains	 several	 useful	 quantities	 including	 the

residuals.	 The	 next	 step	 is	 to	 examine	 the	 residuals	 from	 fitting	 the	 (0,1,0)	 ×	 (1,0,0)12
ARIMA	model.	The	ACF	and	PACF	plots	of	 the	 residuals	 are	provided	 in	Figures	8.15
and	8.16,	respectively.
#	examine	ACF	and	PACF	of	the	(0,1,0)x(1,0,0)12	residuals

acf(arima_1$residuals,	xaxp	=	c(0,	48,	4),	lag.max=48,	main=””)

pacf(arima_1$residuals,	xaxp	=	c(0,	48,	4),	lag.max=48,	main=””)

Figure	8.15	ACF	of	residuals	from	seasonal	AR(1)	model

Figure	8.16	PACF	of	residuals	from	seasonal	AR(1)	model

The	ACF	plot	of	the	residuals	in	Figure	8.15	indicates	that	the	autoregressive	behavior	at
lags	 12,	 24,	 26,	 and	 48	 has	 been	 addressed	 by	 the	 seasonal	 AR(1)	 term.	 The	 only
remaining	ACF	value	of	any	significance	occurs	at	lag	1.	In	Figure	8.16,	there	are	several
significant	PACF	values	at	lags	1,	2,	3,	and	4.

Because	the	PACF	plot	in	Figure	8.16	exhibits	a	slowly	decaying	PACF,	and	the	ACF	cuts
off	sharply	at	lag	1,	an	MA(1)	model	should	be	considered	for	the	nonseasonal	portion	of
the	ARMA	model	on	the	differenced	series.	In	other	words,	a	(0,1,1)	×	(1,0,0)12	ARIMA

model	will	be	fitted	to	the	original	gasoline	production	time	series.
arima_2	<-	arima	(gas_prod,

					order=c(0,1,1),

					seasonal	=	list(order=c(1,0,0),period=12))

arima_2

Series:	gas_prod

ARIMA(0,1,1)(1,0,0)[12]

Coefficients:

			ma1	sar1

		-0.7065	0.8566

s.e.	0.0526	0.0298

sigma^2	estimated	as	25.24:	log	likelihood=-733.22

AIC=1472.43	AICc=1472.53	BIC=1482.86

acf(arima_2$residuals,	xaxp	=	c(0,	48,	4),	lag.max=48,	main=””)

pacf(arima_2$residuals,	xaxp	=	c(0,	48,4),	lag.max=48,	main=””)

Based	on	the	standard	errors	associated	with	each	coefficient	estimate,	the	coefficients	are
significantly	different	from	zero.	In	Figures	8.17	and	8.18,	the	respective	ACF	and	PACF
plots	for	the	residuals	from	the	second	pass	ARIMA	model	indicate	that	no	further	terms
need	to	be	considered	in	the	ARIMA	model.

Figure	8.17	ACF	for	the	residuals	from	the	(0,1,1)	×	(1,0,0)12	model

Figure	8.18	PACF	for	the	residuals	from	the	(0,1,1)	×	(1,0,0)12	model

It	should	be	noted	that	the	ACF	and	PACF	plots	each	have	several	points	that	are	close	to
the	 bounds	 at	 a	 95%	 significance	 level.	However,	 these	 points	 occur	 at	 relatively	 large
lags.	To	avoid	overfitting	the	model,	these	values	are	attributed	to	random	chance.	So	no
attempt	is	made	to	include	these	lags	in	the	model.	However,	it	is	advisable	to	compare	a
reasonably	fitting	model	to	slight	variations	of	that	model.

Comparing	Fitted	Time	Series	Models

The	arima()	function	in	R	uses	Maximum	Likelihood	Estimation	(MLE)	to	estimate	the
model	coefficients.	In	the	R	output	for	an	ARIMA	model,	the	log-likelihood	()	value	is
provided.	The	values	of	 the	model	coefficients	are	determined	such	that	 the	value	of	 the
log	likelihood	function	is	maximized.	Based	on	the	 	value,	the	R	output	provides	several
measures	 that	 are	 useful	 for	 comparing	 the	 appropriateness	 of	 one	 fitted	model	 against
another	fitted	model.	These	measures	follow:

	
AIC	(Akaike	Information	Criterion)
AICc	(Akaike	Information	Criterion,	corrected)
BIC	(Bayesian	Information	Criterion)

Because	these	criteria	impose	a	penalty	based	on	the	number	of	parameters	included	in	the
models,	the	preferred	model	is	the	fitted	model	with	the	smallest	AIC,	AICc,	or	BIC	value.
Table	8.1	provides	the	information	criteria	measures	for	the	ARIMA	models	already	fitted
as	well	 as	 a	 few	additional	 fitted	models.	The	highlighted	 row	corresponds	 to	 the	 fitted
ARIMA	model	obtained	previously	by	examining	the	ACF	and	PACF	plots.

Table	8.1	Information	Criteria	to	Measure	Goodness	of	Fit

ARIMA	Model	(p,d,q)	×	(P,Q,D)S AIC AICc BIC
(0,1,0)	×	(1,0,0)12 1561.38 1561.43 1568.33

(0,1,1)	×	(1,0,0)12 1472.43 1472.53 1482.86

(0,1,2)	×	(1,0,0)12 1474.25 1474.42 1488.16
(1,1,0)	×	(1,0,0)12 1504.29 1504.39 1514.72
(1,1,1)	×	(1,0,0)12 1474.22 1474.39 1488.12

In	 this	 dataset,	 the	 (0,1,1)	×	 (1,0,0)12	model	does	have	 the	 lowest	AIC,	AICc,	 and	BIC
values	compared	to	the	same	criterion	measures	for	the	other	ARIMA	models.

Normality	and	Constant	Variance

The	last	model	validation	step	is	to	examine	the	normality	assumption	of	the	residuals	in
Equation	 8.15.	 Figure	 8.19	 indicates	 residuals	 with	 a	 mean	 near	 zero	 and	 a	 constant
variance	over	time.	The	histogram	in	Figure	8.20	and	the	Q-Q	plot	in	Figure	8.21	support
the	assumption	that	the	error	terms	are	normally	distributed.	Q-Q	plots	were	presented	in
Chapter	6,	“Advanced	Analytical	Theory	and	Methods:	Regression.”
plot(arima_2$residuals,	ylab	=	“Residuals”)

abline(a=0,	b=0)

hist(arima_2$residuals,	xlab=“Residuals”,	xlim=c(-20,20))

qqnorm(arima_2$residuals,	main=””)

qqline(arima_2$residuals)

Figure	8.19	Plot	of	residuals	from	the	fitted	(0,1,1)	×	(1,0,0)12	model

Figure	8.20	Histogram	of	the	residuals	from	the	fitted	(0,1,1)	×	(1,0,0)12	model

Figure	8.21	Q-Q	plot	of	the	residuals	from	the	fitted	(0,1,1)	(1,0,0)12	model

If	the	normality	or	the	constant	variance	assumptions	do	not	appear	to	be	true,	it	may	be
necessary	 to	 transform	 the	 time	 series	 prior	 to	 fitting	 the	 ARIMA	 model.	 A	 common
transformation	is	to	apply	a	logarithm	function.

Forecasting

The	next	step	is	to	use	the	fitted	(0,1,1)	×	(1,0,0)12	model	to	forecast	the	next	12	months	of
gasoline	production.	In	R,	the	forecasts	are	easily	obtained	using	the	predict()	function
and	 the	 fitted	model	 already	 stored	 in	 the	variable	arima_2.	The	predicted	values	 along
with	the	associated	upper	and	lower	bounds	at	a	95%	confidence	level	are	displayed	in	R
and	plotted	in	Figure	8.22.
#predict	the	next	12	months

arima_2.predict	<-	predict(arima_2,n.ahead=12)

matrix(c(arima_2.predict$pred-1.96*arima_2.predict$se,

			arima_2.predict$pred,

			arima_2.predict$pred+1.96*arima_2.predict$se),	12,3,

			dimnames=list(c(241:252)	,c(“LB”,“Pred”,“UB”)))

			LB		Pred		UB

241	394.9689	404.8167	414.6645

242	378.6142	388.8773	399.1404

243	394.9943	405.6566	416.3189

244	405.0188	416.0658	427.1128

245	397.9545	409.3733	420.7922

246	396.1202	407.8991	419.6780

247	396.6028	408.7311	420.8594

248	387.5241	399.9920	412.4598

249	387.1523	399.9507	412.7492

250	387.8486	400.9693	414.0900

251	383.1724	396.6076	410.0428

252	390.2075	403.9500	417.6926

plot(gas_prod,	xlim=c(145,252),

		xlab	=	“Time	(months)”,

		ylab	=	“Gasoline	production	(millions	of	barrels)”,

		ylim=c(360,440))

lines(arima_2.predict$pred)

lines(arima_2.predict$pred+1.96*arima_2.predict$se,	col=4,	lty=2)

lines(arima_2.predict$pred-1.96*arima_2.predict$se,	col=4,	lty=2)

Figure	8.22	Actual	and	forecasted	gasoline	production

8.2.6	Reasons	to	Choose	and	Cautions
One	advantage	of	ARIMA	modeling	is	that	the	analysis	can	be	based	simply	on	historical
time	series	data	 for	 the	variable	of	 interest.	As	observed	 in	 the	chapter	about	 regression
(Chapter	6),	various	input	variables	need	to	be	considered	and	evaluated	for	inclusion	in
the	 regression	model	 for	 the	 outcome	 variable.	 Because	 ARIMA	modeling,	 in	 general,
ignores	any	additional	input	variables,	the	forecasting	process	is	simplified.	If	regression
analysis	was	used	to	model	gasoline	production,	 input	variables	such	as	Gross	Domestic
Product	 (GDP),	 oil	 prices,	 and	 unemployment	 rate	 may	 be	 useful	 input	 variables.
However,	to	forecast	the	gasoline	production	using	regression,	predictions	are	required	for
the	GDP,	oil	price,	and	unemployment	rate	input	variables.

The	 minimal	 data	 requirement	 also	 leads	 to	 a	 disadvantage	 of	 ARIMA	 modeling;	 the
model	does	not	provide	an	indication	of	what	underlying	variables	affect	the	outcome.	For
example,	 if	 ARIMA	modeling	was	 used	 to	 forecast	 future	 retail	 sales,	 the	 fitted	model
would	not	provide	an	indication	of	what	could	be	done	to	increase	sales.	In	other	words,
causal	inferences	cannot	be	drawn	from	the	fitted	ARIMA	model.

One	caution	in	using	time	series	analysis	is	the	impact	of	severe	shocks	to	the	system.	In
the	gas	production	example,	shocks	might	include	refinery	fires,	international	incidents,	or
weather-related	 impacts	 such	as	hurricanes.	Such	events	 can	 lead	 to	 short-term	drops	 in
production,	 followed	by	persistently	 high	 increases	 in	 production	 to	 compensate	 for	 the
lost	production	or	to	simply	capitalize	on	any	price	increases.

Along	similar	lines	of	reasoning,	time	series	analysis	should	only	be	used	for	short-term
forecasts.	Over	time,	gasoline	production	volumes	may	be	affected	by	changing	consumer
demands	as	a	result	of	more	fuel-efficient	gasoline-powered	vehicles,	electric	vehicles,	or
the	introduction	of	natural	gas–powered	vehicles.	Changing	market	dynamics	in	addition
to	 shocks	 will	 make	 any	 long-term	 forecasts,	 several	 years	 into	 the	 future,	 very
questionable.

8.3	Additional	Methods
Additional	time	series	methods	include	the	following:

	
Autoregressive	Moving	Average	with	Exogenous	inputs	(ARMAX)	is	used	to
analyze	a	time	series	that	is	dependent	on	another	time	series.	For	example,	retail
demand	for	products	can	be	modeled	based	on	the	previous	demand	combined	with	a
weather-related	time	series	such	as	temperature	or	rainfall.
Spectral	analysis	is	commonly	used	for	signal	processing	and	other	engineering
applications.	Speech	recognition	software	uses	such	techniques	to	separate	the	signal
for	the	spoken	words	from	the	overall	signal	that	may	include	some	noise.
Generalized	Autoregressive	Conditionally	Heteroscedastic	(GARCH)	is	a	useful
model	for	addressing	time	series	with	nonconstant	variance	or	volatility.	GARCH	is
used	for	modeling	stock	market	activity	and	price	fluctuations.
Kalman	filtering	is	useful	for	analyzing	real-time	inputs	about	a	system	that	can
exist	in	certain	states.	Typically,	there	is	an	underlying	model	of	how	the	various
components	of	the	system	interact	and	affect	each	other.	A	Kalman	filter	processes
the	various	inputs,	attempts	to	identify	the	errors	in	the	input,	and	predicts	the	current
state.	For	example,	a	Kalman	filter	in	a	vehicle	navigation	system	can	process	various
inputs,	such	as	speed	and	direction,	and	update	the	estimate	of	the	current	location.
Multivariate	time	series	analysis	examines	multiple	time	series	and	their	effect	on
each	other.	Vector	ARIMA	(VARIMA)	extends	ARIMA	by	considering	a	vector	of
several	time	series	at	a	particular	time,	t.	VARIMA	can	be	used	in	marketing	analyses
that	examine	the	time	series	related	to	a	company’s	price	and	sales	volume	as	well	as
related	time	series	for	the	competitors.

Summary
This	chapter	presented	time	series	analysis	using	ARIMA	models.	Time	series	analysis	is
different	from	other	statistical	techniques	in	the	sense	that	most	statistical	analyses	assume
the	observations	are	 independent	of	each	other.	Time	series	analysis	 implicitly	addresses
the	case	in	which	any	particular	observation	is	somewhat	dependent	on	prior	observations.

Using	 differencing,	 ARIMA	 models	 allow	 nonstationary	 series	 to	 be	 transformed	 into
stationary	series	 to	which	seasonal	and	nonseasonal	ARMA	models	can	be	applied.	The
importance	 of	 using	 the	 ACF	 and	 PACF	 plots	 to	 evaluate	 the	 autocorrelations	 was
illustrated	 in	 determining	 ARIMA	 models	 to	 consider	 fitting.	 Akaike	 and	 Bayesian
Information	Criteria	 can	 be	 used	 to	 compare	 one	 fitted	ARIMA	model	 against	 another.
Once	an	appropriate	model	has	been	determined,	 future	values	 in	 the	 time	series	can	be
forecasted.

Exercises
	
1.	 Why	use	autocorrelation	instead	of	autocovariance	when	examining	stationary	time

series?
2.	 Provide	an	example	that	if	the	cov(X,	Y)	=	0,	the	two	random	variables,	X	and	Y,	are

not	necessarily	independent.
3.	 Fit	an	appropriate	ARIMA	model	on	the	following	datasets	included	in	R.	Provide

supporting	evidence	on	why	the	fitted	model	was	selected,	and	forecast	the	time
series	for	12	time	periods	ahead.
1.	 faithful:	Waiting	times	(in	minutes)	between	Old	Faithful	geyser	eruptions
2.	 JohnsonJohnson:	Quarterly	earnings	per	J&J	share
3.	 sunspot.month:	Monthly	sunspot	activity	from	1749	to	1997

4.	 When	should	an	ARIMA(p,d,q)	model	in	which	d	>	0	be	considered	instead	of	an
ARMA(p,q)	model?

Chapter	9
Advanced	Analytical	Theory	and	Methods:	Text	Analysis

Key	Concepts
1.	 Term
2.	 Corpus
3.	 Text	normalization
4.	 TFIDF
5.	 Topic	modeling
6.	 Sentiment	analysis

Text	analysis,	sometimes	called	text	analytics,	refers	to	the	representation,	processing,	and
modeling	 of	 textual	 data	 to	 derive	 useful	 insights.	 An	 important	 component	 of	 text
analysis	is	text	mining,	the	process	of	discovering	relationships	and	interesting	patterns	in
large	text	collections.

Text	 analysis	 suffers	 from	 the	 curse	of	 high	dimensionality.	Take	 the	popular	 children’s
book	Green	Eggs	 and	Ham	 [1]	 as	 an	 example.	Author	Theodor	Geisel	 (Dr.	 Seuss)	was
challenged	to	write	an	entire	book	with	just	50	distinct	words.	He	responded	with	the	book
Green	Eggs	and	Ham,	which	contains	804	total	words,	only	50	of	them	distinct.	These	50
words	are:

	
1.	 a,	am,	and,	anywhere,	are,	be,	boat,	box,	car,	could,	dark,	do,	eat,	eggs,	fox,	goat,

good,	green,	ham,	here,	house,	I,	if,	in,	let,	like,	may,	me,	mouse,	not,	on,	or,	rain,
Sam,	say,	see,	so,	thank,	that,	the,	them,	there,	they,	train,	tree,	try,	will,	with,	would,
you

There’s	 a	 substantial	 amount	of	 repetition	 in	 the	book.	Yet,	 as	 repetitive	 as	 the	book	 is,
modeling	it	as	a	vector	of	counts,	or	features,	for	each	distinct	word	still	results	in	a	50-
dimension	problem.

Green	Eggs	and	Ham	is	a	simple	book.	Text	analysis	often	deals	with	textual	data	that	is
far	more	complex.	A	corpus	(plural:	corpora)	is	a	large	collection	of	texts	used	for	various
purposes	 in	Natural	Language	Processing	 (NLP).	Table	9.1	 lists	 a	 few	 example	 corpora
that	are	commonly	used	in	NLP	research.

Table	9.1	Example	Corpora	in	Natural	Language	Processing

Corpus Word
Count Domain Website

Shakespeare 0.88
million Written http://shakespeare.mit.edu/

Brown	Corpus 1
million Written http://icame.uib.no/brown/bcm.html

Penn	Treebank 1
million Newswire http://www.cis.upenn.edu/˜treebank/

http://shakespeare.mit.edu/
http://icame.uib.no/brown/bcm.html
http://www.cis.upenn.edu/~treebank/

Switchboard	Phone
Conversations

3
million

Spoken http://catalog.ldc.upenn.edu/LDC97S62

British	National
Corpus

100
million

Written
and

spoken
http://www.natcorp.ox.ac.uk/

NA	News	Corpus 350
million Newswire http://catalog.ldc.upenn.edu/LDC95T21

European	Parliament
Proceedings	Parallel

Corpus

600
million Legal http://www.statmt.org/europarl/

Google	N-Grams
Corpus

1
trillion Written http://catalog.ldc.upenn.edu/LDC2006T13

The	smallest	corpus	 in	 the	 list,	 the	complete	works	of	Shakespeare,	contains	about	0.88
million	words.	 In	 contrast,	 the	 Google	 n-gram	 corpus	 contains	 one	 trillion	words	 from
publicly	accessible	web	pages.	Out	of	the	one	trillion	words	in	the	Google	n-gram	corpus,
there	 might	 be	 one	 million	 distinct	 words,	 which	 would	 correspond	 to	 one	 million
dimensions.	 The	 high	 dimensionality	 of	 text	 is	 an	 important	 issue,	 and	 it	 has	 a	 direct
impact	on	the	complexities	of	many	text	analysis	tasks.

Another	 major	 challenge	 with	 text	 analysis	 is	 that	 most	 of	 the	 time	 the	 text	 is	 not
structured.	As	 introduced	 in	 Chapter	 1,	 “Introduction	 to	 Big	Data	Analytics,”	 this	may
include	 quasi-structured,	 semi-structured,	 or	 unstructured	 data.	 Table	 9.2	 shows	 some
example	data	sources	and	data	formats	that	text	analysis	may	have	to	deal	with.	Note	that
this	is	not	meant	as	an	exhaustive	list;	rather,	it	highlights	the	challenge	of	text	analysis.

Table	9.2	Example	Data	Sources	and	Formats	for	Text	Analysis

Data	Source Data	Format Data	Structure	Type

News	articles TXT,	HTML,	or	Scanned
PDF Unstructured

Literature TXT,	DOC,	HTML,	or	PDF Unstructured
E-mail TXT,	MSG,	or	EML Unstructured

Web	pages HTML Semi-structured

Server	logs LOG	or	TXT Semi-structured	or	Quasi-
structured

Social	network	API
firehoses XML,	JSON,	or	RSS Semi-structured

Call	center	transcripts TXT Unstructured

http://catalog.ldc.upenn.edu/LDC97S62
http://www.natcorp.ox.ac.uk/
http://catalog.ldc.upenn.edu/LDC95T21
http://www.statmt.org/europarl/
http://catalog.ldc.upenn.edu/LDC2006T13

9.1	Text	Analysis	Steps
A	 text	 analysis	 problem	 usually	 consists	 of	 three	 important	 steps:	 parsing,	 search	 and
retrieval,	 and	 text	 mining.	 Note	 that	 a	 text	 analysis	 problem	may	 also	 consist	 of	 other
subtasks	(such	as	discourse	and	segmentation)	that	are	outside	the	scope	of	this	book.

Parsing	 is	 the	 process	 that	 takes	 unstructured	 text	 and	 imposes	 a	 structure	 for	 further
analysis.	The	unstructured	text	could	be	a	plain	text	file,	a	weblog,	an	Extensible	Markup
Language	(XML)	file,	a	HyperText	Markup	Language	(HTML)	file,	or	a	Word	document.
Parsing	 deconstructs	 the	 provided	 text	 and	 renders	 it	 in	 a	more	 structured	 way	 for	 the
subsequent	steps.

Search	and	retrieval	is	the	identification	of	the	documents	in	a	corpus	that	contain	search
items	 such	 as	 specific	 words,	 phrases,	 topics,	 or	 entities	 like	 people	 or	 organizations.
These	search	items	are	generally	called	key	terms.	Search	and	retrieval	originated	from	the
field	of	library	science	and	is	now	used	extensively	by	web	search	engines.

Text	 mining	 uses	 the	 terms	 and	 indexes	 produced	 by	 the	 prior	 two	 steps	 to	 discover
meaningful	 insights	 pertaining	 to	 domains	 or	 problems	 of	 interest.	 With	 the	 proper
representation	of	the	text,	many	of	the	techniques	mentioned	in	the	previous	chapters,	such
as	clustering	and	classification,	can	be	adapted	to	text	mining.	For	example,	the	k-means
from	Chapter	4,	“Advanced	Analytical	Theory	and	Methods:	Clustering,”	can	be	modified
to	 cluster	 text	 documents	 into	 groups,	 where	 each	 group	 represents	 a	 collection	 of
documents	with	a	 similar	 topic	 [2].	The	distance	of	a	document	 to	a	centroid	 represents
how	 closely	 the	 document	 talks	 about	 that	 topic.	Classification	 tasks	 such	 as	 sentiment
analysis	and	spam	filtering	are	prominent	use	cases	for	the	naïve	Bayes	classifier	(Chapter
7,	“Advanced	Analytical	Theory	and	Methods:	Classification”).	Text	mining	may	utilize
methods	 and	 techniques	 from	 various	 fields	 of	 study,	 such	 as	 statistical	 analysis,
information	retrieval,	data	mining,	and	natural	language	processing.

Note	that,	in	reality,	all	three	steps	do	not	have	to	be	present	in	a	text	analysis	project.	If
the	goal	is	to	construct	a	corpus	or	provide	a	catalog	service,	for	example,	the	focus	would
be	 the	 parsing	 task	 using	 one	 or	 more	 text	 preprocessing	 techniques,	 such	 as	 part-of-
speech	 (POS)	 tagging,	 named	 entity	 recognition,	 lemmatization,	 or	 stemming.
Furthermore,	 the	 three	 tasks	do	not	have	 to	be	sequential.	Sometimes	 their	orders	might
even	look	like	a	tree.	For	example,	one	could	use	parsing	to	build	a	data	store	and	choose
to	either	search	and	retrieve	 the	 related	documents	or	use	 text	mining	on	 the	entire	data
store	to	gain	insights.

Part-of-Speech	(POS)	Tagging,	Lemmatization,	and	Stemming

The	goal	of	POS	tagging	is	to	build	a	model	whose	input	is	a	sentence,	such	as:

	
1.	 he	saw	a	fox

and	whose	output	is	a	tag	sequence.	Each	tag	marks	the	POS	for	the	corresponding
word,	such	as:

1.	 PRP	VBD	DT	NN

according	to	the	Penn	Treebank	POS	tags	[3].	Therefore,	the	four	words	are	mapped
to	pronoun	(personal),	verb	(past	tense),	determiner,	and	noun	(singular),

respectively.
Both	lemmatization	and	stemming	are	techniques	to	reduce	the	number	of
dimensions	and	reduce	inflections	or	variant	forms	to	the	base	form	to	more
accurately	measure	the	number	of	times	each	word	appears.
With	the	use	of	a	given	dictionary,	lemmatization	finds	the	correct	dictionary	base
form	of	a	word.	For	example,	given	the	sentence:

	
1.	 obesity	causes	many	problems

the	output	of	lemmatization	would	be:
1.	 obesity	cause	many	problem

Different	from	lemmatization,	stemming	does	not	need	a	dictionary,	and	it	usually
refers	to	a	crude	process	of	stripping	affixes	based	on	a	set	of	heuristics	with	the	hope

of	correctly	achieving	the	goal	to	reduce	inflections	or	variant	forms.	After	the
process,	words	are	stripped	to	become	stems.	A	stem	is	not	necessarily	an	actual	word

defined	in	the	natural	language,	but	it	is	sufficient	to	differentiate	itself	from	the
stems	of	other	words.	A	well-known	rule-based	stemming	algorithm	is	Porter’s
stemming	algorithm.	It	defines	a	set	of	production	rules	to	iteratively	transform

words	into	their	stems.	For	the	sentence	shown	previously:
1.	 obesity	causes	many	problems

the	output	of	Porter’s	stemming	algorithm	is:
1.	 obes	caus	mani	problem

9.2	A	Text	Analysis	Example
To	further	describe	the	three	text	analysis	steps,	consider	 the	fictitious	company	ACME,
maker	 of	 two	products:	bPhone	 and	bEbook.	ACME	 is	 in	 strong	 competition	with	 other
companies	 that	 manufacture	 and	 sell	 similar	 products.	 To	 succeed,	 ACME	 needs	 to
produce	excellent	phones	and	eBook	readers	and	increase	sales.

One	 of	 the	ways	 the	 company	 does	 this	 is	 to	monitor	what	 is	 being	 said	 about	ACME
products	in	social	media.	In	other	words,	what	is	the	buzz	on	its	products?	ACME	wants
to	search	all	that	is	said	about	ACME	products	in	social	media	sites,	such	as	Twitter	and
Facebook,	and	popular	 review	sites,	 such	as	Amazon	and	ConsumerReports.	 It	wants	 to
answer	questions	such	as	these.

	
Are	people	mentioning	its	products?
What	is	being	said?	Are	the	products	seen	as	good	or	bad?	If	people	think	an	ACME
product	is	bad,	why?	For	example,	are	they	complaining	about	the	battery	life	of	the
bPhone,	or	the	response	time	in	their	bEbook?

ACME	can	monitor	the	social	media	buzz	using	a	simple	process	based	on	the	three	steps
outlined	 in	 Section	 9.1.	 This	 process	 is	 illustrated	 in	 Figure	 9.1,	 and	 it	 includes	 the
modules	in	the	next	list.

	
1.	 Collect	raw	text	(Section	9.3).	This	corresponds	to	Phase	1	and	Phase	2	of	the	Data

Analytic	Lifecycle.	In	this	step,	the	Data	Science	team	at	ACME	monitors	websites
for	references	to	specific	products.	The	websites	may	include	social	media	and
review	sites.	The	team	could	interact	with	social	network	application	programming
interfaces	(APIs)	process	data	feeds,	or	scrape	pages	and	use	product	names	as
keywords	to	get	the	raw	data.	Regular	expressions	are	commonly	used	in	this	case	to
identify	text	that	matches	certain	patterns.	Additional	filters	can	be	applied	to	the	raw
data	for	a	more	focused	study.	For	example,	only	retrieving	the	reviews	originating	in
New	York	instead	of	the	entire	United	States	would	allow	ACME	to	conduct	regional
studies	on	its	products.	Generally,	it	is	a	good	practice	to	apply	filters	during	the	data
collection	phase.	They	can	reduce	I/O	workloads	and	minimize	the	storage
requirements.

2.	 Represent	text	(Section	9.4).	Convert	each	review	into	a	suitable	document
representation	with	proper	indices,	and	build	a	corpus	based	on	these	indexed
reviews.	This	step	corresponds	to	Phases	2	and	3	of	the	Data	Analytic	Lifecycle.

3.	 Compute	the	usefulness	of	each	word	in	the	reviews	using	methods	such	as	TFIDF
(Section	9.5).	This	and	the	following	two	steps	correspond	to	Phases	3	through	5	of
the	Data	Analytic	Lifecycle.

4.	 Categorize	documents	by	topics	(Section	9.6).	This	can	be	achieved	through	topic
models	(such	as	latent	Dirichlet	allocation).

5.	 Determine	sentiments	of	the	reviews	(Section	9.7).	Identify	whether	the	reviews	are
positive	or	negative.	Many	product	review	sites	provide	ratings	of	a	product	with

each	review.	If	such	information	is	not	available,	techniques	like	sentiment	analysis
can	be	used	on	the	textual	data	to	infer	the	underlying	sentiments.	People	can	express
many	emotions.	To	keep	the	process	simple,	ACME	considers	sentiments	as	positive,
neutral,	or	negative.

6.	 Review	the	results	and	gain	greater	insights	(Section	9.8).	This	step	corresponds	to
Phase	5	and	6	of	the	Data	Analytic	Lifecycle.	Marketing	gathers	the	results	from	the
previous	steps.	Find	out	what	exactly	makes	people	love	or	hate	a	product.	Use	one
or	more	visualization	techniques	to	report	the	findings.	Test	the	soundness	of	the
conclusions	and	operationalize	the	findings	if	applicable.

Figure	9.1	ACME’s	Text	Analysis	Process

This	process	organizes	the	topics	presented	in	the	rest	of	the	chapter	and	calls	out	some	of
the	difficulties	that	are	unique	to	text	analysis.

9.3	Collecting	Raw	Text
Recall	that	in	the	Data	Analytic	Lifecycle	seen	in	Chapter	2,	“Data	Analytics	Lifecycle,”
discovery	 is	 the	 first	 phase.	 In	 it,	 the	 Data	 Science	 team	 investigates	 the	 problem,
understands	 the	 necessary	 data	 sources,	 and	 formulates	 initial	 hypotheses.
Correspondingly,	for	text	analysis,	data	must	be	collected	before	anything	can	happen.	The
Data	 Science	 team	 starts	 by	 actively	 monitoring	 various	 websites	 for	 user-generated
contents.	The	user-generated	contents	being	collected	could	be	related	articles	from	news
portals	and	blogs,	comments	on	ACME’s	products	from	online	shops	or	reviews	sites,	or
social	media	posts	that	contain	keywords	bPhone	or	bEbook.	Regardless	of	where	the	data
comes	from,	it’s	likely	that	the	team	would	deal	with	semi-structured	data	such	as	HTML
web	pages,	Really	Simple	Syndication	(RSS)	feeds,	XML,	or	JavaScript	Object	Notation
(JSON)	files.	Enough	structure	needs	to	be	imposed	to	find	the	part	of	the	raw	text	that	the
team	really	cares	about.	In	the	brand	management	example,	ACME	is	interested	in	what
the	reviews	say	about	bPhone	or	bEbook	and	when	the	reviews	are	posted.	Therefore,	the
team	will	actively	collect	such	information.

Many	websites	and	services	offer	public	APIs	[4,	5]	for	 third-party	developers	 to	access
their	 data.	 For	 example,	 the	 Twitter	 API	 [6]	 allows	 developers	 to	 choose	 from	 the
Streaming	API	or	the	REST	API	to	retrieve	public	Twitter	posts	that	contain	the	keywords
bPhone	 or	bEbook.	Developers	 can	 also	 read	 tweets	 in	 real	 time	 from	a	 specific	 user	 or
tweets	posted	near	a	specific	venue.	The	fetched	tweets	are	in	the	JSON	format.

As	an	example,	a	sample	tweet	that	contains	the	keyword	bPhone	fetched	using	the	Twitter
Streaming	API	version	1.1	is	shown	next.
01	{

02	“created_at”:	“Thu	Aug	15	20:06:48	+0000	2013”,

03	“coordinates”:	{

04		“type”:	“Point”,

05		“coordinates”:	[

06			-157.81538521787621,

07			21.3002578885766

08]

09	},

10		“favorite_count”:	0,

11		“id”:	368101488276824010,

12		“id_str”:	“368101488276824014”,

13		“lang”:	“en”,

14		“metadata”:	{

15			“iso_language_code”:	“en”,

16			“result_type”:	“recent”

17		},

18		“retweet_count”:	0,

19		“retweeted”:	false,

20		“source”:	“<a	href="http://www.twitter.com"

21					rel="nofollow">Twitter	for	bPhone”,

22		“text”:	“I	once	had	a	gf	back	in	the	day.	Then	the	bPhone

23					came	out	lol”,

24		“truncated”:	false,

25		“user”:	{

26			“contributors_enabled”:	false,

27			“created_at”:	„Mon	Jun	24	09:15:54	+0000	2013”,

28			“default_profile”:	false,

29			“default_profile_image”:	false,

30			“description”:	“Love	Life	and	Live	Good”,

31			“favourites_count”:	23,

32			“follow_request_sent”:	false,

33			“followers_count”:	96,

34			“following”:	false,

35			“friends_count”:	347,

36			“geo_enabled”:	false,

37			“id”:	2542887414,

38			“id_str”:	“2542887414”,

39			“is_translator”:	false,

40			“lang”:	“en-gb”,

41			“listed_count”:	0,

42			“location”:	“Beautiful	Hawaii”,

43			“name”:	“The	Original	DJ	Ice”,

44			“notifications”:	false,

45			“profile_background_color”:	“C0DEED”,

46			“profile_background_image_url”:

47	“http://a0.twimg.com/profile_bg_imgs/378800000/b12e56725ee.jpeg”,

48			“profile_background_tile”:	true,

49			“profile_image_url”:

50	“http://a0.twimg.com/profile_imgs/378800010/2d55a4388bcffd5.jpeg”,

51			“profile_link_color”:	“0084B4”,

52			“profile_sidebar_border_color”:	“FFFFFF”,

53			“profile_sidebar_fill_color”:	“DDEEF6”,

54			“profile_text_color”:	“333333”,

55			“profile_use_background_image”:	true,

56			“protected”:	false,

57			“screen_name”:	“DJ_Ice”,

58			“statuses_count”:	186,

59			“time_zone”:	“Hawaii”,

60			“url”:	null,

61			“utc_offset”:	-36000,

62			“verified”:	false

63		}

64	}

Fields	 created_at	 at	 line	 2	 and	 text	 at	 line	 22	 in	 the	 previous	 tweet	 provide	 the
information	 that	 interests	 ACME.	 The	 created_at	 entry	 stores	 the	 timestamp	 that	 the
tweet	was	published,	and	the	text	field	stores	the	main	content	of	the	Twitter	post.	Other
fields	could	be	useful,	too.	For	example,	utilizing	fields	such	as	coordinates	(line	3	to	9),
user’s	local	language	(lang,	line	40),	user’s	location	(line	42),	time_zone	(line	59),	and
utc_offset	 (line	 61)	 allows	 the	 analysis	 to	 focus	 on	 tweets	 from	 a	 specific	 region.
Therefore,	 the	 team	 can	 research	 what	 people	 say	 about	 ACME’s	 products	 at	 a	 more
granular	level.

Many	news	portals	and	blogs	provide	data	feeds	that	are	in	an	open	standard	format,	such
as	RSS	or	XML.	As	an	example,	an	RSS	feed	for	a	phone	review	blog	is	shown	next.
01	<channel>

02		<title>All	about	Phones</title>

03		<description>My	Phone	Review	Site</description>

04		<link>http://www.phones.com/link.htm</link>

05

06		<item>

07			<title>bPhone:	The	best!</title>

08			<description>I	love	LOVE	my	bPhone!</description>

09			<link>http://www.phones.com/link.htm</link>

10			<guid	isPermaLink=“false”>1102345</guid>

11			<pubDate>Tue,	29	Aug	2011	09:00:00	-0400</pubDate>

12		<item>

13	</channel>

The	 content	 from	 the	 title	 (line	 7),	 the	 description	 (line	 8),	 and	 the	 published	 date
(pubDate,	line	11)	is	what	ACME	is	interested	in.

If	the	plan	is	to	collect	user	comments	on	ACME’s	products	from	online	shops	and	review
sites	where	APIs	or	data	feeds	are	not	provided,	the	team	may	have	to	write	web	scrapers
to	parse	web	pages	and	automatically	extract	the	interesting	data	from	those	HTML	files.
A	web	scraper	 is	 a	 software	program	 (bot)	 that	 systematically	browses	 the	World	Wide
Web,	 downloads	 web	 pages,	 extracts	 useful	 information,	 and	 stores	 it	 somewhere	 for
further	study.

Unfortunately,	 it	 is	 nearly	 impossible	 to	 write	 a	 one-size-fits-all	 web	 scraper.	 This	 is
because	websites	like	online	shops	and	review	sites	have	different	structures.	It	is	common
to	 customize	 a	web	 scraper	 for	 a	 specific	website.	 In	 addition,	 the	website	 formats	 can
change	over	time,	which	requires	the	web	scraper	to	be	updated	every	now	and	then.	To
build	a	web	scraper	for	a	specific	website,	one	must	study	the	HTML	source	code	of	its
web	 pages	 to	 find	 patterns	 before	 extracting	 any	 useful	 content.	 For	 example,	 the	 team
may	find	out	that	each	user	comment	in	the	HTML	is	enclosed	by	a	DIV	element	inside
another	DIV	with	 the	 ID	usrcommt,	 or	 it	might	be	 enclosed	by	a	DIV	element	with	 the
CLASS	commtcls.

The	team	can	then	construct	the	web	scraper	based	on	the	identified	patterns.	The	scraper
can	use	the	curl	tool	[7]	to	fetch	HTML	source	code	given	specific	URLs,	use	XPath	[8]
and	 regular	 expressions	 to	 select	 and	 extract	 the	data	 that	match	 the	patterns,	 and	write
them	into	a	data	store.

Regular	expressions	can	find	words	and	strings	 that	match	particular	patterns	 in	 the	 text
effectively	and	efficiently.	Table	9.3	shows	some	regular	expressions.	The	general	idea	is
that	once	text	from	the	fields	of	interest	is	obtained,	regular	expressions	can	help	identify
if	the	text	is	really	interesting	for	the	project.	In	this	case,	do	those	fields	mention	bPhone,
bEbook,	or	ACME?	When	matching	the	text,	regular	expressions	can	also	take	into	account
capitalizations,	common	misspellings,	common	abbreviations,	and	special	 formats	 for	e-
mail	addresses,	dates,	and	telephone	numbers.

Table	9.3	Example	Regular	Expressions

Regular
Expression Matches Note

b(P|p)hone bPhone,	bphone Pipe	“|”	means	“or”

bEbo*k
bEbk,	bEbok,	bEbook,	bEboook, “*”	matches	zero	or	more	occurrences	of

the	preceding	letter

bEbooook,	bEboooook,	…

bEbo+k
bEbok,	bEbook,	bEboook,
bEbooook,	bEboooook,	…

“+”	matches	one	or	more	occurrences	of
the	preceding	letter

bEbo{2,4}k bEbook,	bEboook,	bEbooook “{2,4}”	matches	from	two	to	four
repetitions	of	the	preceding	letter	“o”

^I	love Text	starting	with	“I	love” “^”	matches	the	start	of	a	string
ACME$ Text	ending	with	“ACME” “$”	matches	the	end	of	a	string

This	section	has	discussed	three	different	sources	where	raw	data	may	come	from:	tweets
that	contain	keywords	bPhone	or	bEbook,	related	articles	from	news	portals	and	blogs,	and
comments	on	ACME’s	products	from	online	shops	or	reviews	sites.

If	one	chooses	not	to	build	a	data	collector	from	scratch,	many	companies	such	as	GNIP
[9]	and	DataSift	[10]	can	provide	data	collection	or	data	reselling	services.

Depending	on	how	the	fetched	raw	data	will	be	used,	the	Data	Science	team	needs	to	be
careful	not	to	violate	the	rights	of	the	owner	of	the	information	and	user	agreements	about
use	of	websites	during	the	data	collection.	Many	websites	place	a	file	called	robots.txt
in	 the	 root	 directory—that	 is,	 http://…/robots.txt	 (for	 example,
http://www.amazon.com/robots.txt).	It	lists	the	directories	and	files	that	are	allowed	or
disallowed	 to	 be	 visited	 so	 that	 web	 scrapers	 or	 web	 crawlers	 know	 how	 to	 treat	 the
website	correctly.

http://…/robots.txt
http://www.amazon.com/robots.txt

9.4	Representing	Text
After	 the	 previous	 step,	 the	 team	 now	 has	 some	 raw	 text	 to	 start	 with.	 In	 this	 data
representation	step,	raw	text	 is	first	 transformed	with	text	normalization	techniques	such
as	 tokenization	 and	 case	 folding.	 Then	 it	 is	 represented	 in	 a	 more	 structured	 way	 for
analysis.

Tokenization	is	the	task	of	separating	(also	called	tokenizing)	words	from	the	body	of	text.
Raw	text	is	converted	into	collections	of	tokens	after	the	tokenization,	where	each	token	is
generally	a	word.

A	 common	 approach	 is	 tokenizing	 on	 spaces.	 For	 example,	 with	 the	 tweet	 shown
previously:
I	once	had	a	gf	back	in	the	day.	Then	the	bPhone	came	out	lol

tokenization	based	on	spaces	would	output	a	list	of	tokens.
{I,	once,	had,	a,	gf,	back,	in,	the,	day.,

Then,	the,	bPhone,	came,	out,	lol}

Note	 that	 token	 “day.”	 contains	 a	 period.	 This	 is	 the	 result	 of	 only	 using	 space	 as	 the
separator.	Therefore,	tokens	“day.”	and	“day”	would	be	considered	different	terms	in	the
downstream	 analysis	 unless	 an	 additional	 lookup	 table	 is	 provided.	One	way	 to	 fix	 the
problem	without	the	use	of	a	lookup	table	is	to	remove	the	period	if	it	appears	at	the	end	of
a	sentence.	Another	way	is	to	tokenize	the	text	based	on	punctuation	marks	and	spaces.	In
this	case,	the	previous	tweet	would	become:
{I,	once,	had,	a,	gf,	back,	in,	the,	day,	.,

Then,	the,	bPhone,	came,	out,	lol}

However,	 tokenizing	 based	 on	 punctuation	 marks	 might	 not	 be	 well	 suited	 to	 certain
scenarios.	For	example,	if	the	text	contains	contractions	such	as	we’ll,	 tokenizing	based
on	punctuation	will	split	them	into	separated	words	we	and	ll.	For	words	such	as	can’t,
the	output	would	be	can	and	t.	It	would	be	more	preferable	either	not	to	tokenize	them	or
to	 tokenize	 we’ll	 into	 we	 and	 ‘ll,	 and	 can’t	 into	 can	 and	 ‘t.	 The	 ‘t	 token	 is	 more
recognizable	as	negative	than	the	t	token.	If	the	team	is	dealing	with	certain	tasks	such	as
information	 extraction	 or	 sentiment	 analysis,	 tokenizing	 solely	 based	 on	 punctuation
marks	and	spaces	may	obscure	or	even	distort	meanings	in	the	text.

Tokenization	 is	 a	 much	 more	 difficult	 task	 than	 one	 may	 expect.	 For	 example,	 should
words	 like	 state-of-the-art,	 Wi-Fi,	 and	 San	 Francisco	 be	 considered	 one	 token	 or
more?	 Should	 words	 like	 Résumé,	 résumé,	 and	 resume	 all	 map	 to	 the	 same	 token?
Tokenization	 is	 even	more	 difficult	 beyond	English.	 In	German,	 for	 example,	 there	 are
many	 unsegmented	 compound	 nouns.	 In	 Chinese,	 there	 are	 no	 spaces	 between	 words.
Japanese	has	several	alphabets	intermingled.	This	list	can	go	on.

It’s	safe	to	say	that	there	is	no	single	tokenizer	that	will	work	in	every	scenario.	The	team
needs	to	decide	what	counts	as	a	token	depending	on	the	domain	of	the	task	and	select	an
appropriate	tokenization	technique	that	fits	most	situations	well.	In	reality,	it’s	common	to
pair	a	standard	tokenization	technique	with	a	lookup	table	to	address	the	contractions	and
terms	that	should	not	be	tokenized.	Sometimes	it	may	not	be	a	bad	idea	to	develop	one’s
own	tokenization	from	scratch.

Another	 text	normalization	 technique	 is	 called	case	folding,	which	 reduces	 all	 letters	 to
lowercase	(or	the	opposite	if	applicable).	For	the	previous	tweet,	after	case	folding	the	text
would	become	this:
i	once	had	a	gf	back	in	the	day.	then	the	bphone	came	out	lol

One	needs	 to	be	 cautious	 applying	case	 folding	 to	 tasks	 such	as	 information	extraction,
sentiment	analysis,	and	machine	translation.	If	implemented	incorrectly,	case	folding	may
reduce	or	change	the	meaning	of	the	text	and	create	additional	noise.	For	example,	when
General	Motors	becomes	general	and	motors,	the	downstream	analysis	may	very	likely
consider	 them	 as	 separated	 words	 rather	 than	 the	 name	 of	 a	 company.	 When	 the
abbreviation	of	the	World	Health	Organization	WHO	or	the	rock	band	The	Who	become	who,
they	may	both	be	interpreted	as	the	pronoun	who.

If	 case	 folding	must	be	present,	one	way	 to	 reduce	 such	problems	 is	 to	 create	 a	 lookup
table	 of	 words	 not	 to	 be	 case	 folded.	 Alternatively,	 the	 team	 can	 come	 up	 with	 some
heuristics	or	rules-based	strategies	for	the	case	folding.	For	example,	the	program	can	be
taught	to	ignore	words	that	have	uppercase	in	the	middle	of	a	sentence.

After	normalizing	the	text	by	tokenization	and	case	folding,	it	needs	to	be	represented	in	a
more	structured	way.	A	simple	yet	widely	used	approach	to	represent	text	is	called	bag-of-
words.	 Given	 a	 document,	 bag-of-words	 represents	 the	 document	 as	 a	 set	 of	 terms,
ignoring	 information	 such	 as	 order,	 context,	 inferences,	 and	 discourse.	 Each	 word	 is
considered	 a	 term	 or	 token	 (which	 is	 often	 the	 smallest	 unit	 for	 the	 analysis).	 In	many
cases,	bag-of-words	additionally	assumes	every	term	in	the	document	is	independent.	The
document	then	becomes	a	vector	with	one	dimension	for	every	distinct	term	in	the	space,
and	 the	 terms	 are	 unordered.	 The	 permutation	D*	 of	 a	 document	 D	 contains	 the	 same
words	exactly	the	same	number	of	times	but	in	a	different	order.	Therefore,	using	the	bag-
of-words	 representation,	 document	 D	 and	 its	 permutation	 D*	 would	 share	 the	 same
representation.

Bag-of-words	 takes	 quite	 a	 naïve	 approach,	 as	 order	 plays	 an	 important	 role	 in	 the
semantics	of	 text.	With	bag-of-words,	many	 texts	with	different	meanings	are	combined
into	one	form.	For	example,	the	texts	“a	dog	bites	a	man”	and	“a	man	bites	a	dog”	have
very	different	meanings,	but	they	would	share	the	same	representation	with	bag-of-words.

Although	 the	bag-of-words	 technique	oversimplifies	 the	problem,	 it	 is	 still	 considered	a
good	approach	to	start	with,	and	it	is	widely	used	for	text	analysis.	A	paper	by	Salton	and
Buckley	 [11]	 states	 the	 effectiveness	 of	 using	 single	words	 as	 identifiers	 as	 opposed	 to
multiple-term	identifiers,	which	retain	the	order	of	the	words:

In	reviewing	 the	extensive	 literature	accumulated	during	 the	past	25	years	 in	 the
area	of	retrieval	system	evaluation,	the	overwhelming	evidence	is	that	the	judicious
use	 of	 single-term	 identifiers	 is	 preferable	 to	 the	 incorporation	 of	more	 complex
entities	extracted	from	the	texts	themselves	or	obtained	from	available	vocabulary
schedules.

Although	the	work	by	Salton	and	Buckley	was	published	in	1988,	there	has	been	little,	if
any,	substantial	evidence	to	discredit	the	claim.	Bag-of-words	uses	single-term	identifiers,
which	are	usually	sufficient	for	the	text	analysis	in	place	of	multiple-term	identifiers.

Using	 single	 words	 as	 identifiers	 with	 the	 bag-of-words	 representation,	 the	 term
frequency	(TF)	of	each	word	can	be	calculated.	Term	frequency	represents	the	weight	of
each	term	in	a	document,	and	it	is	proportional	to	the	number	of	occurrences	of	the	term	in
that	 document.	 Figure	 9.2	 shows	 the	 50	 most	 frequent	 words	 and	 the	 numbers	 of
occurrences	from	Shakespeare’s	Hamlet.	The	word	frequency	distribution	roughly	follows
Zipf’s	Law	[12,	13]—that	is,	the	 -th	most	common	word	occurs	approximately	 	as	often
as	 the	 most	 frequent	 term.	 In	 other	 words,	 the	 frequency	 of	 a	 word	 is	 inversely
proportional	 to	 its	 rank	 in	 the	 frequency	 table.	 Term	 frequency	 is	 revisited	 later	 in	 this
chapter.

Figure	9.2	The	50	most	frequent	words	in	Shakespeare’s	Hamlet

What’s	Beyond	Bag-of-Words?

Bag-of-words	is	a	common	technique	to	start	with.	But	sometimes	the	Data	Science
team	prefers	other	methods	of	text	representation	that	are	more	sophisticated.	These
more	advanced	methods	consider	factors	such	as	word	order,	context,	inferences,	and
discourse.	For	example,	one	such	method	can	keep	track	of	the	word	order	of	every
document	and	compare	the	normalized	differences	of	the	word	orders	[14].	These
advanced	techniques	are	outside	the	scope	of	this	book.

Besides	extracting	the	terms,	their	morphological	features	may	need	to	be	included.	The
morphological	features	specify	additional	information	about	the	terms,	which	may	include
root	words,	affixes,	part-of-speech	tags,	named	entities,	or	intonation	(variations	of	spoken
pitch).	The	features	from	this	step	contribute	to	the	downstream	analysis	in	classification
or	sentiment	analysis.

The	set	of	features	that	need	to	be	extracted	and	stored	highly	depends	on	the	specific	task
to	be	performed.	If	the	task	is	to	label	and	distinguish	the	part	of	speech,	for	example,	the
features	will	include	all	the	words	in	the	text	and	their	corresponding	part-of-speech	tags.
If	 the	 task	 is	 to	 annotate	 the	 named	 entities	 like	 names	 and	 organizations,	 the	 features
highlight	 such	 information	 appearing	 in	 the	 text.	 Constructing	 the	 features	 is	 no	 trivial
task;	 quite	 often	 this	 is	 done	 entirely	 manually,	 and	 sometimes	 it	 requires	 domain
expertise.

Sometimes	creating	features	is	a	text	analysis	task	all	to	itself.	One	such	example	is	topic
modeling.	Topic	modeling	provides	a	way	 to	quickly	analyze	 large	volumes	of	 raw	 text
and	identify	the	latent	topics.	Topic	modeling	may	not	require	the	documents	to	be	labeled
or	 annotated.	 It	 can	 discover	 topics	 directly	 from	 an	 analysis	 of	 the	 raw	 text.	 A	 topic
consists	of	a	cluster	of	words	that	frequently	occur	together	and	that	share	the	same	theme.
Probabilistic	 topic	modeling,	discussed	in	greater	detail	 later	 in	Section	9.6,	 is	a	suite	of
algorithms	 that	 aim	 to	parse	 large	 archives	of	documents	 and	discover	 and	annotate	 the
topics.

It	 is	 important	 not	 only	 to	 create	 a	 representation	 of	 a	 document	 but	 also	 to	 create	 a
representation	of	a	corpus.	As	introduced	earlier	in	the	chapter,	a	corpus	is	a	collection	of
documents.	A	corpus	could	be	so	large	that	it	 includes	all	the	documents	in	one	or	more
languages,	 or	 it	 could	 be	 smaller	 or	 limited	 to	 a	 specific	 domain,	 such	 as	 technology,
medicine,	 or	 law.	 For	 a	web	 search	 engine,	 the	 entire	World	Wide	Web	 is	 the	 relevant
corpus.	Most	corpora	are	much	smaller.	The	Brown	Corpus	[15]	was	the	first	million-word
electronic	corpus	of	English,	 created	 in	1961	at	Brown	University.	 It	 includes	 text	 from
around	500	 sources,	 and	 the	 source	 has	 been	 categorized	 into	 15	 genres,	 such	 as	 news,
editorial,	fiction,	and	so	on.	Table	9.4	lists	the	genres	of	the	Brown	Corpus	as	an	example
of	how	to	organize	information	in	a	corpus.

Table	9.4	Categories	of	the	Brown	Corpus

Category
Number	of

Example	Source

Sources
A.	Reportage 44 Chicago	Tribune
B.	Editorial 27 Christian	Science	Monitor
C.	Reviews 17 Life

D.	Religion 17 William	Pollard:	Physicist	and
Christian

E.	Skills	and	Hobbies 36 Joseph	E.	Choate:	The	American
Boating	Scene

F.	Popular	Lore 48 David	Boroff:	Jewish	Teen-Age
Culture

G.	Belles	Lettres,	Biography,
Memoirs,	and	so	on 75 Selma	J.	Cohen:	Avant-Garde

Choreography

H.	Miscellaneous 30 U.	S.	Dep’t	of	Defense:	Medicine	in
National	Defense

J.	Learned 80 J.	F.	Vedder:	Micrometeorites

K.	General	Fiction 29 David	Stacton:	The	Judges	of	the
Secret	Court

L.	Mystery	and	Detective	Fiction 24 S.	L.	M.	Barlow:	Monologue	of
Murder

M.	Science	Fiction 6 Jim	Harmon:	The	Planet	with	No
Nightmare

N.	Adventure	and	Western	Fiction 29 Paul	Brock:	Toughest	Lawman	in	the
Old	West

P.	Romance	and	Love	Story 29 Morley	Callaghan:	A	Passion	in
Rome

R.	Humor 9 Evan	Esar:	Humorous	English

Many	corpora	focus	on	specific	domains.	For	example,	the	BioCreative	corpora	[16]	are
from	 biology,	 the	 Switchboard	 corpus	 [17]	 contains	 telephone	 conversations,	 and	 the
European	 Parliament	 Proceedings	 Parallel	 Corpus	 [18]	 was	 extracted	 from	 the
proceedings	of	the	European	Parliament	in	21	European	languages.

Most	corpora	come	with	metadata,	such	as	 the	size	of	 the	corpus	and	 the	domains	from
which	 the	 text	 is	 extracted.	 Some	 corpora	 (such	 as	 the	 Brown	 Corpus)	 include	 the
information	 content	 of	 every	word	 appearing	 in	 the	 text.	 Information	content	 (IC)	 is	 a
metric	 to	 denote	 the	 importance	 of	 a	 term	 in	 a	 corpus.	 The	 conventional	 way	 [19]	 of
measuring	the	IC	of	a	term	is	to	combine	the	knowledge	of	its	hierarchical	structure	from
an	ontology	with	statistics	on	its	actual	usage	in	 text	derived	from	a	corpus.	Terms	with
higher	 IC	 values	 are	 considered	 more	 important	 than	 terms	 with	 lower	 IC	 values.	 For
example,	the	word	necklace	generally	has	a	higher	IC	value	than	the	word	 jewelry	 in	an
English	corpus	because	 jewelry	 is	more	general	 and	 is	 likely	 to	 appear	more	often	 than
necklace.	Research	shows	that	IC	can	help	measure	the	semantic	similarity	of	terms	[20].
In	addition,	such	measures	do	not	require	an	annotated	corpus,	and	they	generally	achieve

strong	correlations	with	human	judgment	[21,	20].

In	the	brand	management	example,	the	team	has	collected	the	ACME	product	reviews	and
turned	them	into	the	proper	representation	with	the	techniques	discussed	earlier.	Next,	the
reviews	 and	 the	 representation	 need	 to	 be	 stored	 in	 a	 searchable	 archive	 for	 future
reference	 and	 research.	 This	 archive	 could	 be	 a	 SQL	 database,	XML	or	 JSON	 files,	 or
plain	text	files	from	one	or	more	directories.

Corpus	statistics	such	as	IC	can	help	identify	the	importance	of	a	term	from	the	documents
being	analyzed.	However,	IC	values	included	in	the	metadata	of	a	traditional	corpus	(such
as	Brown	corpus)	sitting	externally	as	a	knowledge	base	cannot	satisfy	the	need	to	analyze
the	dynamically	changed,	unstructured	data	from	the	web.	The	problem	is	twofold.	First,
both	traditional	corpora	and	IC	metadata	do	not	change	over	time.	Any	term	not	existing
in	 the	corpus	 text	and	any	newly	 invented	words	would	automatically	 receive	a	zero	 IC
value.	 Second,	 the	 corpus	 represents	 the	 entire	 knowledge	 base	 for	 the	 algorithm	being
used	in	 the	downstream	analysis.	The	nature	of	 the	unstructured	text	determines	 that	 the
data	being	 analyzed	can	 contain	 any	 topics,	many	of	which	may	be	 absent	 in	 the	given
knowledge	base.	For	example,	if	the	task	is	to	research	people’s	attitudes	on	musicians,	a
traditional	corpus	constructed	50	years	ago	would	not	know	that	 the	 term	U2	 is	a	band;
therefore,	it	would	receive	a	zero	on	IC,	which	means	it’s	not	an	important	term.	A	better
approach	would	go	through	all	the	fetched	documents	and	find	out	that	most	of	them	are
related	to	music,	with	U2	appearing	too	often	to	be	an	unimportant	term.	Therefore,	it	is
necessary	to	come	up	with	a	metric	that	can	easily	adapt	to	the	context	and	nature	of	the
text	 instead	of	 relying	on	a	 traditional	corpus.	The	next	section	discusses	such	a	metric.
It’s	 known	 as	Term	Frequency—Inverse	Document	Frequency	 (TFIDF),	which	 is	 based
entirely	on	all	 the	 fetched	documents	and	which	keeps	 track	of	 the	 importance	of	 terms
occurring	in	each	of	the	documents.

Note	that	the	fetched	documents	may	change	constantly	over	time.	Consider	the	case	of	a
web	search	engine,	in	which	each	fetched	document	corresponds	to	a	matching	web	page
in	a	 search	 result.	The	documents	 are	 added,	modified,	or	 removed	and,	 as	 a	 result,	 the
metrics	and	indices	must	be	updated	correspondingly.	Additionally,	word	distributions	can
change	over	time,	which	reduces	the	effectiveness	of	classifiers	and	filters	(such	as	spam
filters)	unless	they	are	retrained.

9.5	Term	Frequency—Inverse	Document	Frequency	(TFIDF)
This	 section	 presents	 TFIDF,	 a	 measure	 widely	 used	 in	 information	 retrieval	 and	 text
analysis.	Instead	of	using	a	traditional	corpus	as	a	knowledge	base,	TFIDF	directly	works
on	 top	 of	 the	 fetched	 documents	 and	 treats	 these	 documents	 as	 the	 “corpus.”	TFIDF	 is
robust	 and	 efficient	 on	 dynamic	 content,	 because	 document	 changes	 require	 only	 the
update	of	frequency	counts.

Given	a	term	t	and	a	document	 	containing	n	terms,	the	simplest	form	of	term
frequency	of	 t	 in	d	 can	 be	 defined	 as	 the	 number	 of	 times	 t	 appears	 in	d,	 as	 shown	 in
Equation	9.1.

where

9.1	

To	understand	how	the	term	frequency	is	computed,	consider	a	bag-of-words	vector	space
of	 10	 words:	 i,	 love,	 acme,	 my,	 bebook,	 bphone,	 fantastic,	 slow,	 terrible,	 and
terrific.	Given	the	text	I	love	LOVE	my	bPhone	extracted	from	the	RSS	feed	in	Section
9.3,	 Table	 9.5	 shows	 its	 corresponding	 term	 frequency	 vector	 after	 case	 folding	 and
tokenization.

Table	9.5	A	Sample	Term	Frequency	Vector

Term Frequency
i 1

love 2
acme 0
my 1

bebook 0
bphone 1
fantastic 0
slow 0
terrible 0
terrific 0

The	term	frequency	function	can	be	logarithmically	scaled.	Recall	that	in	Figure	3.11	and
Figure	3.12	of	Chapter	3,	“Review	of	Basic	Data	Analytic	Methods	Using	R,”	it	shows	the
logarithm	 can	 be	 applied	 to	 distribution	 with	 a	 long	 tail	 to	 enable	 more	 data	 detail.
Similarly,	 the	 logarithm	 can	 be	 applied	 to	 word	 frequencies	 whose	 distribution	 also
contains	a	long	tail,	as	shown	in	Equation	9.2.

9.2	

Because	 longer	documents	contain	more	 terms,	 they	 tend	to	have	higher	 term	frequency
values.	They	also	tend	to	contain	more	distinct	terms.	These	factors	can	conspire	to	raise
the	 term	 frequency	 values	 of	 longer	 documents	 and	 lead	 to	 undesirable	 bias	 favoring
longer	 documents.	To	 address	 this	 problem,	 the	 term	 frequency	 can	 be	 normalized.	 For
example,	 the	 term	 frequency	 of	 term	t	 in	 document	 d	 can	 be	 normalized	 based	 on	 the
number	of	terms	in	d	as	shown	in	Equation	9.3.

9.3	

Besides	 the	 three	 common	 definitions	 mentioned	 earlier,	 there	 are	 other	 less	 common
variations	 [22]	 of	 term	 frequency.	 In	 practice,	 one	 needs	 to	 choose	 the	 term	 frequency
definition	that	is	the	most	suitable	to	the	data	and	the	problem	to	be	solved.

A	term	frequency	vector	(shown	in	Table	9.5)	can	become	very	high	dimensional	because
the	bag-of-words	vector	space	can	grow	substantially	to	include	all	the	words	in	English.
The	 high	 dimensionality	makes	 it	 difficult	 to	 store	 and	 parse	 the	 text	 and	 contribute	 to
performance	issues	related	to	text	analysis.

For	the	purpose	of	reducing	dimensionality,	not	all	the	words	from	a	given	language	need
to	 be	 included	 in	 the	 term	 frequency	 vector.	 In	 English,	 for	 example,	 it	 is	 common	 to
remove	 words	 such	 as	 the,	 a,	 of,	 and,	 to,	 and	 other	 articles	 that	 are	 not	 likely	 to
contribute	 to	semantic	understanding.	These	common	words	are	called	stop	words.	Lists
of	stop	words	are	available	in	various	languages	for	automating	the	identification	of	stop
words.	 Among	 them	 is	 the	 Snowball’s	 stop	words	 list	 [23]	 that	 contains	 stop	 words	 in
more	than	ten	languages.

Another	 simple	 yet	 effective	 way	 to	 reduce	 dimensionality	 is	 to	 store	 a	 term	 and	 its
frequency	only	if	the	term	appears	at	least	once	in	a	document.	Any	term	not	existing	in
the	term	frequency	vector	by	default	will	have	a	frequency	of	0.	Therefore,	 the	previous
term	frequency	vector	would	be	simplified	to	what	is	shown	in	Table	9.6.

Table	9.6	A	Simpler	Form	of	the	Term	Frequency	Vector

Term Frequency
i 1

love 2
my 1

bphone 1

Some	 NLP	 techniques	 such	 as	 lemmatization	 and	 stemming	 can	 also	 reduce	 high
dimensionality.	Lemmatization	 and	 stemming	 are	 two	different	 techniques	 that	 combine
various	forms	of	a	word.	With	these	techniques,	words	such	as	play,	plays,	played,	and
playing	can	be	mapped	to	the	same	term.

It	has	been	shown	that	the	term	frequency	is	based	on	the	raw	count	of	a	term	occurring	in
a	stand-alone	document.	Term	frequency	by	itself	suffers	a	critical	problem:	It	regards	that
stand-alone	document	as	the	entire	world.	The	importance	of	a	term	is	solely	based	on	its
presence	 in	 this	 particular	 document.	 Stop	 words	 such	 as	 the,	 and,	 and	 a	 could	 be

inappropriately	considered	the	most	important	because	they	have	the	highest	frequencies
in	 every	 document.	 For	 example,	 the	 top	 three	 most	 frequent	 words	 in	 Shakespeare’s
Hamlet	are	all	stop	words	(the,	and,	and	of,	as	shown	in	Figure	9.2).	Besides	stop	words,
words	 that	 are	more	 general	 in	meaning	 tend	 to	 appear	more	 often,	 thus	 having	 higher
term	frequencies.	In	an	article	about	consumer	telecommunications,	the	word	phone	would
be	 likely	 to	 receive	a	high	 term	 frequency.	As	a	 result,	 the	 important	keywords	 such	as
bPhone	and	bEbook	and	their	related	words	could	appear	to	be	less	important.	Consider	a
search	engine	that	responds	to	a	search	query	and	fetches	relevant	documents.	Using	term
frequency	alone,	the	search	engine	would	not	properly	assess	how	relevant	each	document
is	in	relation	to	the	search	query.

A	quick	fix	for	the	problem	is	to	introduce	an	additional	variable	that	has	a	broader	view
of	the	world—considering	the	importance	of	a	term	not	only	in	a	single	document	but	in	a
collection	of	documents,	or	in	a	corpus.	The	additional	variable	should	reduce	the	effect	of
the	term	frequency	as	the	term	appears	in	more	documents.

Indeed,	that	is	the	intention	of	the	inverted	document	frequency	(IDF).	The	IDF	inversely
corresponds	 to	 the	 document	 frequency	 (DF),	 which	 is	 defined	 to	 be	 the	 number	 of
documents	 in	 the	 corpus	 that	 contain	 a	 term.	 Let	 a	 corpus	D	 contain	 N	 documents.	 The
document	 frequency	of	a	 term	t	 in	corpus	 	 is	defined	as	 shown	 in	Equation
9.4.

where

9.4	

The	Inverse	document	frequency	of	a	 term	t	 is	obtained	by	dividing	N	by	 the	document
frequency	of	the	term	and	then	taking	the	logarithm	of	that	quotient,	as	shown	in	Equation
9.5.

9.5	

If	the	term	is	not	in	the	corpus,	it	leads	to	a	division-by-zero.	A	quick	fix	is	to	add	1	to	the
denominator,	as	demonstrated	in	Equation	9.6.

9.6	

The	precise	base	of	the	logarithm	is	not	material	to	the	ranking	of	a	term.	Mathematically,
the	base	constitutes	a	constant	multiplicative	factor	towards	the	overall	result.

Figure	9.3	shows	50	words	with	(a)	the	highest	corpus-wide	term	frequencies	(TF),	(b)	the
highest	 document	 frequencies	 (DF),	 and	 (c)	 the	 highest	 Inverse	 document	 frequencies
(IDF)	from	the	news	category	of	 the	Brown	Corpus.	Stop	words	tend	to	have	higher	TF
and	DF	because	they	are	likely	to	appear	more	often	in	most	documents.

Figure	9.3	Words	from	Brown	corpus’s	news	category	with	the	highest	corpus	TF,	DF,	or
IDF

Words	with	higher	IDF	tend	to	be	more	meaningful	over	the	entire	corpus.	In	other	words,
the	IDF	of	a	rare	term	would	be	high,	and	the	IDF	of	a	frequent	term	would	be	low.	For
example,	if	a	corpus	contains	1,000	documents,	1,000	of	them	might	contain	the	word	the,
and	10	of	them	might	contain	the	word	bPhone.	With	Equation	9.5,	the	IDF	of	the	would
be	0,	and	the	IDF	of	bPhone	would	be	log100,	which	is	greater	than	the	IDF	of	the.	If	a
corpus	consists	of	mostly	phone	reviews,	 the	word	phone	would	probably	have	high	TF
and	DF	but	low	IDF.

Despite	 the	 fact	 that	 IDF	 encourages	words	 that	 are	more	meaningful,	 it	 comes	with	 a
caveat.	Because	the	total	document	count	of	a	corpus	()	 remains	a	constant,	 IDF	solely
depends	on	the	DF.	All	words	having	the	same	DF	value	therefore	receive	the	same	IDF
value.	 IDF	 scores	words	 higher	 that	 occur	 less	 frequently	 across	 the	 documents.	 Those
words	 that	 score	 the	 lowest	 DF	 receive	 the	 same	 highest	 IDF.	 In	 Figure	 9.3	 (c),	 for
example,	 sunbonnet	 and	 narcotic	 appeared	 in	 an	 equal	 number	 of	 documents	 in	 the
Brown	corpus;	therefore,	they	received	the	same	IDF	values.	In	many	cases,	it	is	useful	to
distinguish	between	two	words	that	appear	in	an	equal	number	of	documents.	Methods	to
further	weight	words	should	be	considered	to	refine	the	IDF	score.

The	TFIDF	(or	TF-IDF)	is	a	measure	that	considers	both	the	prevalence	of	a	term	within	a
document	(TF)	and	the	scarcity	of	the	term	over	the	entire	corpus	(IDF).	The	TFIDF	of	a
term	 t	 in	 a	 document	 d	 is	 defined	 as	 the	 term	 frequency	 of	 t	 in	 d	 multiplying	 the
document	frequency	of	t	in	the	corpus	as	shown	in	Equation	9.7:

9.7	

TFIDF	 scores	words	 higher	 that	 appear	more	 often	 in	 a	 document	 but	 occur	 less	 often
across	 all	 documents	 in	 the	 corpus.	 Note	 that	 TFIDF	 applies	 to	 a	 term	 in	 a	 specific
document,	 so	 the	 same	 term	 is	 likely	 to	 receive	 different	 TFIDF	 scores	 in	 different
documents	(because	the	TF	values	may	be	different).

TFIDF	is	efficient	in	that	the	calculations	are	simple	and	straightforward,	and	it	does	not
require	knowledge	of	the	underlying	meanings	of	the	text.	But	this	approach	also	reveals
little	of	the	inter-document	or	intra-document	statistical	structure.	The	next	section	shows
how	topic	models	can	address	this	shortcoming	of	TFIDF.

9.6	Categorizing	Documents	by	Topics
With	 the	 reviews	 collected	 and	 represented,	 the	 data	 science	 team	 at	 ACME	 wants	 to
categorize	the	reviews	by	topics.	As	discussed	earlier	in	the	chapter,	a	topic	consists	of	a
cluster	of	words	that	frequently	occur	together	and	share	the	same	theme.

The	 topics	 of	 a	 document	 are	 not	 as	 straightforward	 as	 they	 might	 initially	 appear.
Consider	these	two	reviews:

	
1.	 The	bPhone5x	has	coverage	everywhere.	It’s	much	less	flaky	than	my	old	bPhone4G.
2.	 While	I	love	ACME’s	bPhone	series,	I’ve	been	quite	disappointed	by	the	bEbook.

The	text	is	illegible,	and	it	makes	even	my	old	NBook	look	blazingly	fast.

Is	 the	 first	 review	 about	 bPhone5x	 or	 bPhone4G?	 Is	 the	 second	 review	 about	 bPhone,
bEbook,	or	NBook?	For	machines,	these	questions	can	be	difficult	to	answer.

Intuitively,	 if	 a	 review	 is	 talking	 about	 bPhone5x,	 the	 term	bPhone5x	 and	 related	 terms
(such	as	phone	and	ACME)	are	likely	to	appear	frequently.	A	document	typically	consists	of
multiple	themes	running	through	the	text	in	different	proportions—for	example,	30%	on	a
topic	related	to	phones,	15%	on	a	topic	related	to	appearance,	10%	on	a	topic	related	to
shipping,	5%	on	a	topic	related	to	service,	and	so	on.

Document	grouping	can	be	achieved	with	clustering	methods	such	as	k-means	clustering
[24]	or	classification	methods	such	as	support	vector	machines	[25],	k-nearest	neighbors
[26],	or	naïve	Bayes	[27].	However,	a	more	feasible	and	prevalent	approach	is	to	use	topic
modeling.	 Topic	modeling	 provides	 tools	 to	 automatically	 organize,	 search,	 understand,
and	 summarize	 from	 vast	 amounts	 of	 information.	Topic	models	 [28,	 29]	 are	 statistical
models	that	examine	words	from	a	set	of	documents,	determine	the	themes	over	the	text,
and	 discover	 how	 the	 themes	 are	 associated	 or	 change	 over	 time.	 The	 process	 of	 topic
modeling	can	be	simplified	to	the	following.

	
1.	 Uncover	the	hidden	topical	patterns	within	a	corpus.
2.	 Annotate	documents	according	to	these	topics.
3.	 Use	annotations	to	organize,	search,	and	summarize	texts.

A	 topic	 is	 formally	 defined	 as	 a	 distribution	 over	 a	 fixed	 vocabulary	 of	 words	 [29].
Different	topics	would	have	different	distributions	over	the	same	vocabulary.	A	topic	can
be	viewed	as	a	cluster	of	words	with	related	meanings,	and	each	word	has	a	corresponding
weight	 inside	 this	 topic.	 Note	 that	 a	 word	 from	 the	 vocabulary	 can	 reside	 in	 multiple
topics	with	different	weights.	Topic	models	do	not	necessarily	require	prior	knowledge	of
the	texts.	The	topics	can	emerge	solely	based	on	analyzing	the	text.

The	 simplest	 topic	 model	 is	 latent	 Dirichlet	 allocation	 (LDA)	 [29],	 a	 generative
probabilistic	model	of	a	corpus	proposed	by	David	M.	Blei	and	two	other	researchers.	In
generative	probabilistic	modeling,	data	is	treated	as	the	result	of	a	generative	process	that
includes	hidden	variables.	LDA	assumes	that	there	is	a	fixed	vocabulary	of	words,	and	the

number	of	 the	 latent	 topics	 is	predefined	and	 remains	 constant.	LDA	assumes	 that	 each
latent	topic	follows	a	Dirichlet	distribution	[30]	over	the	vocabulary,	and	each	document	is
represented	as	a	random	mixture	of	latent	topics.

Figure	9.4	 illustrates	 the	 intuitions	 behind	LDA.	The	 left	 side	 of	 the	 figure	 shows	 four
topics	built	 from	a	corpus,	where	each	 topic	contains	a	 list	of	 the	most	 important	words
from	the	vocabulary.	The	four	example	topics	are	related	to	problem,	policy,	neural,	and
report.	 For	 each	 document,	 a	 distribution	 over	 the	 topics	 is	 chosen,	 as	 shown	 in	 the
histogram	on	the	right.	Next,	a	topic	assignment	is	picked	for	each	word	in	the	document,
and	the	word	from	the	corresponding	topic	(colored	discs)	 is	chosen.	In	reality,	only	the
documents	 (as	 shown	 in	 the	middle	 of	 the	 figure)	 are	 available.	The	goal	 of	LDA	 is	 to
infer	the	underlying	topics,	topic	proportions,	and	topic	assignments	for	every	document.

Figure	9.4	The	intuitions	behind	LDA

The	 reader	 can	 refer	 to	 the	 original	 paper	 [29]	 for	 the	 mathematical	 detail	 of	 LDA.
Basically,	 LDA	 can	 be	 viewed	 as	 a	 case	 of	 hierarchical	 Bayesian	 estimation	 with	 a
posterior	distribution	to	group	data	such	as	documents	with	similar	topics.

Many	programming	tools	provide	software	packages	that	can	perform	LDA	over	datasets.
R	comes	with	an	lda	package	[31]	that	has	built-in	functions	and	sample	datasets.	The	lda
package	was	 developed	 by	David	M.	 Blei’s	 research	 group	 [32].	 Figure	 9.5	 shows	 the
distributions	 of	 ten	 topics	 on	 nine	 scientific	 documents	 randomly	 drawn	 from	 the	 cora
dataset	of	the	lda	package.	The	cora	dataset	is	a	collection	of	2,410	scientific	documents
extracted	from	the	Cora	search	engine	[33].

Figure	9.5	Distributions	of	ten	topics	over	nine	scientific	documents	from	the	Cora	dataset

The	code	 that	 follows	shows	how	to	generate	a	graph	similar	 to	Figure	9.5	using	R	and
add-on	packages	such	as	lda	and	ggplot.
require(“ggplot2”)

require(“reshape2”)

require(“lda”)

#	load	documents	and	vocabulary

data(cora.documents)

data(cora.vocab)

theme_set(theme_bw())

#	Number	of	topic	clusters	to	display

K	<-	10

#	Number	of	documents	to	display

N	<-	9

result	<-	lda.collapsed.gibbs.sampler(cora.documents,

										K,	##	Num	clusters

										cora.vocab,

										25,	##	Num	iterations

										0.1,

										0.1,

										compute.log.likelihood=TRUE)

#	Get	the	top	words	in	the	cluster

top.words	<-	top.topic.words(result$topics,	5,	by.score=TRUE)

#	build	topic	proportions

topic.props	<-	t(result$document_sums)	/	colSums(result$document_sums)

document.samples	<-	sample(1:dim(topic.props)[1],	N)

topic.props	<-	topic.props[document.samples,]

topic.props[is.na(topic.props)]	<-	1	/	K

colnames(topic.props)	<-	apply(top.words,	2,	paste,	collapse=”	“)

topic.props.df	<-	melt(cbind(data.frame(topic.props),

								document=factor(1:N)),

						variable.name=“topic”,

						id.vars	=	“document”)

qplot(topic,	value*100,	fill=topic,	stat=“identity”,

		ylab=“proportion	(%)”,	data=topic.props.df,

		geom=“histogram”)	+

theme(axis.text.x	=	element_text(angle=0,	hjust=1,	size=12))	+

coord_flip()	+

facet_wrap(˜	document,	ncol=3)

Topic	 models	 can	 be	 used	 in	 document	 modeling,	 document	 classification,	 and
collaborative	filtering	[29].	Topic	models	not	only	can	be	applied	to	textual	data,	they	can
also	help	 annotate	 images.	 Just	 as	 a	 document	 can	be	 considered	 a	 collection	of	 topics,
images	can	be	considered	a	collection	of	image	features.

9.7	Determining	Sentiments
In	addition	to	 the	TFIDF	and	topic	models,	 the	Data	Science	team	may	want	 to	 identify
the	sentiments	in	user	comments	and	reviews	of	the	ACME	products.	Sentiment	analysis
refers	 to	 a	 group	 of	 tasks	 that	 use	 statistics	 and	 natural	 language	 processing	 to	 mine
opinions	to	identify	and	extract	subjective	information	from	texts.

Early	work	 on	 sentiment	 analysis	 focused	 on	 detecting	 the	 polarity	 of	 product	 reviews
from	Epinions	[34]	and	movie	reviews	from	the	Internet	Movie	Database	(IMDb)	[35]	at
the	document	level.	Later	work	handles	sentiment	analysis	at	the	sentence	level	[36].	More
recently,	the	focus	has	shifted	to	phrase-level	[37]	and	short-text	forms	in	response	to	the
popularity	of	micro-blogging	services	such	as	Twitter	[38–42].

Intuitively,	to	conduct	sentiment	analysis,	one	can	manually	construct	lists	of	words	with
positive	 sentiments	 (such	 as	 brilliant,	 awesome,	 and	 spectacular)	 and	 negative
sentiments	(such	as	awful,	stupid,	and	hideous).	Related	work	has	pointed	out	that	such
an	approach	can	be	expected	to	achieve	accuracy	around	60%	[35],	and	it	is	likely	to	be
outperformed	by	examination	of	corpus	statistics	[43].

Classification	methods	such	as	naïve	Bayes	as	introduced	in	Chapter	7,	maximum	entropy
(MaxEnt),	and	support	vector	machines	(SVM)	are	often	used	to	extract	corpus	statistics
for	 sentiment	 analysis.	 Related	 research	 has	 found	 out	 that	 these	 classifiers	 can	 score
around	80%	accuracy	 [35,	41,	42]	on	 sentiment	analysis	over	unstructured	data.	One	or
more	 of	 such	 classifiers	 can	 be	 applied	 to	 unstructured	 data,	 such	 as	movie	 reviews	 or
even	tweets.

The	movie	review	corpus	by	Pang	et	al.	[35]	includes	2,000	movie	reviews	collected	from
an	 IMDb	 archive	 of	 the	 rec.arts.movies.reviews	 newsgroup	 [43].	 These	 movie	 reviews
have	been	manually	tagged	into	1,000	positive	reviews	and	1,000	negative	reviews.

Depending	on	the	classifier,	the	data	may	need	to	be	split	into	training	and	testing	sets.	As
seen	previously	in	Chapter	7,	a	useful	rule	of	the	thumb	for	splitting	data	is	to	produce	a
training	set	much	bigger	than	the	testing	set.	For	example,	an	80/20	split	would	produce
80%	of	the	data	as	the	training	set	and	20%	as	the	testing	set.

Next,	one	or	more	classifiers	are	trained	over	the	training	set	to	learn	the	characteristics	or
patterns	residing	in	the	data.	The	sentiment	tags	in	the	testing	data	are	hidden	away	from
the	 classifiers.	 After	 the	 training,	 classifiers	 are	 tested	 over	 the	 testing	 set	 to	 infer	 the
sentiment	 tags.	 Finally,	 the	 result	 is	 compared	 against	 the	 original	 sentiment	 tags	 to
evaluate	the	overall	performance	of	the	classifier.

The	code	that	follows	is	written	in	Python	using	the	Natural	Language	Processing	Toolkit
(NLTK)	 library	 (http://nltk.org/).	 It	 shows	how	 to	perform	 sentiment	 analysis	 using
the	naïve	Bayes	classifier	over	the	movie	review	corpus.

The	code	splits	the	2,000	reviews	into	1,600	reviews	as	the	training	set	and	400	reviews	as
the	testing	set.	The	naïve	Bayes	classifier	learns	from	the	training	set.	The	sentiments	in
the	testing	set	are	hidden	away	from	the	classifier.	For	each	review	in	the	training	set,	the
classifier	 learns	how	each	 feature	 impacts	 the	outcome	sentiment.	Next,	 the	 classifier	 is
given	 the	 testing	 set.	 For	 each	 review	 in	 the	 set,	 it	 predicts	 what	 the	 corresponding
sentiment	should	be,	given	the	features	in	the	current	review.

http://nltk.org/

import	nltk.classify.util

from	nltk.classify	import	NaiveBayesClassifier

from	nltk.corpus	import	movie_reviews

from	collections	import	defaultdict

import	numpy	as	np

#	define	an	80/20	split	for	train/test

SPLIT	=	0.8

def	word_feats(words):

feats	=	defaultdict(lambda:	False)

for	word	in	words:

		feats[word]	=	True

return	feats

posids	=	movie_reviews.fileids(‘pos’)

negids	=	movie_reviews.fileids(‘neg’)

posfeats	=	[(word_feats(movie_reviews.words(fileids=[f])),	‘pos’)

			for	f	in	posids]

negfeats	=	[(word_feats(movie_reviews.words(fileids=[f])),	‘neg’)

			for	f	in	negids]

cutoff	=	int(len(posfeats)	*	SPLIT)

trainfeats	=	negfeats[:cutoff]	+	posfeats[:cutoff]

testfeats	=	negfeats[cutoff:]	+	posfeats[cutoff:]

print	‘Train	on	%d	instances\nTest	on	%d	instances’	%	(len(trainfeats),

														len(testfeats))

classifier	=	NaiveBayesClassifier.train(trainfeats)

print	‘Accuracy:’,	nltk.classify.util.accuracy(classifier,	testfeats)

classifier.show_most_informative_features()

#	prepare	confusion	matrix

pos	=	[classifier.classify(fs)	for	(fs,l)	in	posfeats[cutoff:]]

pos	=	np.array(pos)

neg	=	[classifier.classify(fs)	for	(fs,l)	in	negfeats[cutoff:]]

neg	=	np.array(neg)

print	‘Confusion	matrix:’

print	‘\t’*2,	‘Predicted	class’

print	‘-‘*40

print	‘|\t	%d	(TP)	\t|\t	%d	(FN)	\t|	Actual	class’	%	(

			(pos	==	‘pos’).sum(),	(pos	==	‘neg’).sum()

print	‘-‘*40

print	‘|\t	%d	(FP)	\t|\t	%d	(TN)	\t|’	%	(

			(neg	==	‘pos’).sum(),	(neg	==	‘neg’).sum())

print	‘-‘*40

The	output	that	follows	shows	that	the	naïve	Bayes	classifier	is	trained	on	1,600	instances
and	tested	on	400	instances	from	the	movie	corpus.	The	classifier	achieves	an	accuracy	of
73.5%.	Most	information	features	for	positive	reviews	from	the	corpus	include	words	such
as	outstanding,	vulnerable,	and	astounding;	and	words	such	as	insulting,	ludicrous,
and	uninvolving	are	the	most	informative	features	for	negative	reviews.	At	the	end,	the
output	also	shows	the	confusion	matrix	corresponding	to	the	classifier	to	further	evaluate
the	performance.
Train	on	1600	instances

Test	on	400	instances

Accuracy:	0.735

Most	Informative	Features

				outstanding	=	True			pos	:	neg	=		13.9	:	1.0

				insulting	=	True			neg	:	pos	=		13.7	:	1.0

				vulnerable	=	True			pos	:	neg	=		13.0	:	1.0

				ludicrous	=	True			neg	:	pos	=		12.6	:	1.0

				uninvolving	=	True			neg	:	pos	=		12.3	:	1.0

				astounding	=	True			pos	:	neg	=		11.7	:	1.0

					avoids	=	True			pos	:	neg	=		11.7	:	1.0

				fascination	=	True			pos	:	neg	=		11.0	:	1.0

				animators	=	True			pos	:	neg	=		10.3	:	1.0

					symbol	=	True			pos	:	neg	=		10.3	:	1.0

Confusion	matrix:

				Predicted	class

–––––––––––––-

|		195	(TP)		|		5	(FN)		|	Actual	class

–––––––––––––-

|		101	(FP)		|		99	(TN)		|

–––––––––––––-

As	discussed	earlier	in	Chapter	7,	a	confusion	matrix	is	a	specific	table	layout	that	allows
visualization	of	 the	performance	of	a	model	over	 the	 testing	set.	Every	 row	and	column
corresponds	to	a	possible	class	in	the	dataset.	Each	cell	in	the	matrix	shows	the	number	of
test	examples	for	which	the	actual	class	is	the	row	and	the	predicted	class	is	the	column.
Good	results	correspond	to	large	numbers	down	the	main	diagonal	(TP	and	TN)	and	small,
ideally	 zero,	 off-diagonal	 elements	 (FP	 and	 FN).	 Table	9.7	 shows	 the	 confusion	matrix
from	 the	 previous	 program	 output	 for	 the	 testing	 set	 of	 400	 reviews.	 Because	 a	 well-
performed	classifier	 should	have	a	 confusion	matrix	with	 large	numbers	 for	TP	and	TN
and	 ideally	near	zero	numbers	 for	FP	and	FN,	 it	 can	be	concluded	 that	 the	naïve	Bayes
classifier	has	many	false	negatives,	and	it	does	not	perform	very	well	on	this	testing	set.

Table	9.7	Confusion	Matrix	for	the	Example	Testing	Set

Predicted	Class
Positive Negative

Actual	Class Positive 195	(TP) 5	(FN)
Negative 101	(FP) 99	(TN)

Chapter	 7	 has	 introduced	 a	 few	 measures	 to	 evaluate	 the	 performance	 of	 a	 classifier
beyond	 the	 confusion	matrix.	 Precision	 and	 recall	 are	 two	measures	 commonly	 used	 to
evaluate	 tasks	 related	 to	 text	 analysis.	 Definitions	 of	 precision	 and	 recall	 are	 given	 in
Equations	9.8	and	9.9.

9.8	

9.9	

Precision	is	defined	as	the	percentage	of	documents	in	the	results	that	are	relevant.	If	by
entering	keyword	bPhone,	 the	 search	engine	 returns	100	documents,	 and	70	of	 them	are
relevant,	the	precision	of	the	search	engine	result	is	0.7%.

Recall	 is	 the	 percentage	 of	 returned	 documents	 among	 all	 relevant	 documents	 in	 the
corpus.	If	by	entering	keyword	bPhone,	the	search	engine	returns	100	documents,	only	70
of	which	are	relevant	while	failing	to	return	10	additional,	relevant	documents,	the	recall

is	 .

Therefore,	 the	naïve	Bayes	classifier	 from	Table	9.7	 receives	a	 recall	of	
and	a	precision	of	 .

Precision	and	recall	are	important	concepts,	whether	the	task	is	about	information	retrieval
of	a	 search	engine	or	 text	analysis	over	a	 finite	corpus.	A	good	classifier	 ideally	 should
achieve	both	precision	and	recall	close	to	1.0.	In	information	retrieval,	a	perfect	precision
score	of	1.0	means	that	every	result	retrieved	by	a	search	was	relevant	(but	says	nothing
about	whether	all	relevant	documents	were	retrieved),	whereas	a	perfect	recall	score	of	1.0
means	 that	 all	 relevant	 documents	were	 retrieved	by	 the	 search	 (but	 says	nothing	 about
how	 many	 irrelevant	 documents	 were	 also	 retrieved).	 Both	 precision	 and	 recall	 are
therefore	based	on	an	understanding	and	measure	of	relevance.	In	reality,	it	is	difficult	for
a	classifier	to	achieve	both	high	precision	and	high	recall.	For	the	example	in	Table	9.7,
the	 naïve	 Bayes	 classifier	 has	 a	 high	 recall	 but	 a	 low	 precision.	 Therefore,	 the	 Data
Science	team	needs	to	check	the	cleanliness	of	the	data,	optimize	the	classifier,	and	find	if
there	are	ways	to	improve	the	precision	while	retaining	the	high	recall.

Classifiers	determine	 sentiments	 solely	based	on	 the	datasets	on	which	 they	are	 trained.
The	 domain	 of	 the	 datasets	 and	 the	 characteristics	 of	 the	 features	 determine	 what	 the
knowledge	classifiers	can	learn.	For	example,	lightweight	is	a	positive	feature	for	reviews
on	laptops	but	not	necessarily	for	reviews	on	wheelbarrows	or	textbooks.	In	addition,	the
training	and	the	testing	sets	should	share	similar	traits	for	classifiers	to	perform	well.	For
example,	classifiers	trained	on	movie	reviews	generally	should	not	be	tested	on	tweets	or
blog	comments.

Note	 that	 an	 absolute	 sentiment	 level	 is	 not	 necessarily	 very	 informative.	 Instead,	 a
baseline	should	be	established	and	then	compared	against	the	latest	observed	values.	For
example,	 a	 ratio	 of	 40%	 positive	 tweets	 on	 a	 topic	 versus	 60%	 negative	might	 not	 be
considered	a	sign	that	a	product	is	unsuccessful	if	other	similar	successful	products	have	a
similar	ratio	based	on	the	psychology	of	when	people	tweet.

The	 previous	 example	 demonstrates	 how	 to	 use	 naïve	 Bayes	 to	 perform	 sentiment
analysis.	The	example	can	be	applied	to	tweets	on	ACME’s	bPhone	and	bEbook	simply	by
replacing	the	movie	review	corpus	with	the	pretagged	tweets.	Other	classifiers	can	also	be
used	in	place	of	naïve	Bayes.

The	movie	 review	corpus	contains	only	2,000	 reviews;	 therefore,	 it	 is	 relatively	easy	 to
manually	 tag	each	 review.	For	 sentiment	 analysis	based	on	 larger	 amounts	of	 streaming
data	 such	 as	 millions	 or	 billions	 of	 tweets,	 it	 is	 less	 feasible	 to	 collect	 and	 construct
datasets	of	tweets	that	are	big	enough	or	manually	tag	each	of	the	tweets	to	train	and	test
one	or	more	classifiers.	There	are	two	popular	ways	to	cope	with	this	problem.	The	first
way	to	construct	pretagged	data,	as	illustrated	in	recent	work	by	Go	et	al.	[41]	and	Pak	and
Paroubek	[42],	is	to	apply	supervision	and	use	emoticons	such	as	:)	and	:(to	indicate	if	a
tweet	 contains	 positive	 or	 negative	 sentiments.	Words	 from	 these	 tweets	 can	 in	 turn	 be
used	as	clues	to	classify	the	sentiments	of	future	tweets.	Go	et	al.	[41]	use	classification
methods	including	naïve	Bayes,	MaxEnt,	and	SVM	over	the	training	and	testing	datasets
to	 perform	 sentiment	 classifications.	 Their	 demo	 is	 available	 at
http://www.sentiment140.com.	Figure	9.6	shows	 the	sentiments	 resulting	from	a	query

http://www.sentiment140.com

against	 the	 term	 “Boston	 weather”	 on	 a	 set	 of	 tweets.	 Viewers	 can	 mark	 the	 result	 as
accurate	 or	 inaccurate,	 and	 such	 feedback	 can	 be	 incorporated	 in	 future	 training	 of	 the
algorithm.

Figure	9.6	Sentiment140	[41],	an	online	tool	for	Twitter	sentiment	analysis

Emoticons	make	 it	 easy	 and	 fast	 to	 detect	 sentiments	 of	millions	 or	 billions	 of	 tweets.
However,	 using	 emoticons	 as	 the	 sole	 indicator	 of	 sentiments	 sometimes	 can	 be
misleading,	 as	 emoticons	 may	 not	 necessarily	 correspond	 to	 the	 sentiments	 in	 the
accompanied	 text.	 For	 example,	 the	 sample	 tweet	 shown	 in	 Figure	 9.7	 contains	 the	 :)
emoticon,	but	the	text	does	not	express	a	positive	sentiment.

Figure	9.7	Tweet	with	the	:)	emoticon	does	not	necessarily	correspond	to	a	positive
sentiment

To	address	this	problem,	related	research	usually	uses	Amazon	Mechanical	Turk	(MTurk)
[44]	to	collect	human-tagged	reviews.	MTurk	is	a	crowdsourcing	Internet	marketplace	that
enables	individuals	or	businesses	to	coordinate	the	use	of	human	intelligence	to	perform
tasks	 that	 are	 difficult	 for	 computers	 to	 do.	 In	 many	 cases,	MTurk	 has	 been	 shown	 to
collect	 human	 input	much	 faster	 compared	 to	 traditional	 channels	 such	 as	 door-to-door
surveys.	For	the	example	sentiment	analysis	task,	the	Data	Science	team	can	publish	the
tweets	collected	from	Section	9.3	to	MTurk	as	Human	Intelligence	Tasks	(HITs).	The	team

can	then	ask	human	workers	to	tag	each	tweet	as	positive,	neutral,	or	negative.	The	result
can	be	used	to	train	one	or	more	classifiers	or	test	the	performances	of	classifiers.	Figure
9.8	shows	a	sample	task	on	MTurk	related	to	sentiment	analysis.

Figure	9.8	Amazon	Mechanical	Turk

9.8	Gaining	Insights
So	far	this	chapter	has	discussed	several	text	analysis	tasks	including	text	collection,	text
representation,	 TFIDF,	 topic	 models,	 and	 sentiment	 analysis.	 This	 section	 shows	 how
ACME	uses	 these	 techniques	 to	gain	 insights	 into	customer	opinions	about	 its	products.
To	keep	the	example	simple,	this	section	only	uses	bPhone	to	illustrate	the	steps.

Corresponding	to	the	data	collection	phase,	the	Data	Science	team	has	used	bPhone	as	the
keyword	to	collect	more	than	300	reviews	from	a	popular	technical	review	website.

The	300	reviews	are	visualized	as	a	word	cloud	after	removing	stop	words.	A	word	cloud
(or	tag	cloud)	 is	a	visual	representation	of	 textual	data.	Tags	are	generally	single	words,
and	the	 importance	of	each	word	 is	shown	with	font	size	or	color.	Figure	9.9	shows	 the
word	cloud	built	from	the	300	reviews.	The	reviews	have	been	previously	case	folded	and
tokenized	 into	 lowercased	words,	 and	 stop	words	 have	 been	 removed	 from	 the	 text.	 A
more	 frequently	 appearing	 word	 in	 Figure	 9.9	 is	 shown	 with	 a	 larger	 font	 size.	 The
orientation	of	each	word	is	only	for	the	aesthetical	purpose.	Most	of	the	graph	is	taken	up
by	 the	 words	 phone	 and	 bphone,	 which	 occur	 frequently	 but	 are	 not	 very	 informative.
Overall,	 the	graph	reveals	 little	 information.	The	 team	needs	 to	conduct	further	analyses
on	the	data.

Figure	9.9	Word	cloud	on	all	300	reviews	on	bPhone

Fortunately,	 the	 popular	 technical	 review	 website	 allows	 users	 to	 provide	 ratings	 on	 a
scale	 from	 one	 to	 five	 when	 they	 post	 reviews.	 The	 team	 can	 divide	 the	 reviews	 into
subgroups	using	those	ratings.

To	reveal	more	information,	the	team	can	remove	words	such	as	phone,	bPhone,	and	ACME,
which	 are	not	 very	useful	 for	 the	 study.	Related	 research	often	 refers	 to	 these	words	 as
domain-specific	stop	words.	Figure	9.10	shows	the	word	cloud	corresponding	to	50	five-
star	 reviews	 extracted	 from	 the	 data.	 Note	 that	 the	 shades	 of	 gray	 are	 only	 for	 the
aesthetical	purpose.	The	result	suggests	 that	customers	are	satisfied	with	the	seller,	 the
brand,	and	the	product,	and	they	recommend	bPhone	to	their	friends	and	families.

Figure	9.10	Word	cloud	on	five-star	reviews

Figure	 9.11	 shows	 the	 word	 cloud	 of	 70	 one-star	 reviews.	 The	 words	 sim	 and	 button
occur	 frequently	 enough	 that	 it	 would	 be	 advisable	 to	 sample	 the	 reviews	 that	 contain
these	terms	and	determine	what	is	being	said	about	buttons	and	SIM	cards.	Word	clouds
can	reveal	useful	information	beyond	the	most	prominent	terms.	For	example,	the	graph	in
Figure	9.11	oddly	contains	words	like	stolen	and	Venezuela.	As	the	Data	Science	team
investigates	 the	 stories	 behind	 these	 words,	 it	 finds	 that	 these	 words	 appear	 in	 1-star
reviews	 because	 there	 are	 a	 few	 unauthorized	 sellers	 from	 Venezuela	 that	 sell	 stolen
bPhones.	ACME	can	take	further	actions	from	this	point.	This	is	an	example	of	how	text
analysis	and	even	simple	visualizations	can	help	gain	insights.

Figure	9.11	Word	cloud	on	one-star	reviews

TFIDF	can	be	used	to	highlight	the	informative	words	in	the	reviews.	Figure	9.12	shows	a
subset	of	the	reviews	in	which	each	word	with	a	larger	font	size	corresponds	to	a	higher
TFIDF	 value.	 Each	 review	 is	 considered	 a	 document.	 With	 TFIDF,	 data	 analysts	 can
quickly	go	through	the	reviews	and	identify	what	aspects	are	perceived	to	make	bPhone	a

good	product	or	a	bad	product.

Figure	9.12	Reviews	highlighted	by	TFIDF	values

Topic	models	such	as	LDA	can	categorize	the	reviews	into	topics.	Figures	9.13	and	9.14
show	 circular	 graphs	 of	 topics	 as	 results	 of	 the	 LDA.	 These	 figures	 are	 produced	with
tools	 and	 technologies	 such	 as	 Python,	 NoSQL,	 and	 D3.js.	 Figure	 9.13	 visualizes	 ten
topics	built	 from	 the	 five-star	 reviews.	Each	 topic	 focuses	on	a	different	aspect	 that	can
characterize	the	reviews.	The	disc	size	represents	the	weight	of	a	word.	In	an	interactive
environment,	 hovering	 the	 mouse	 over	 a	 topic	 displays	 the	 full	 words	 and	 their
corresponding	weights.

Figure	9.13	Ten	topics	on	five-star	reviews

Figure	9.14	Ten	topics	on	one-star	reviews

Figure	 9.14	 visualizes	 ten	 topics	 from	 one-star	 reviews.	 For	 example,	 the	 bottom-right
topic	contains	words	such	as	button,	power,	and	broken,	which	may	indicate	that	bPhone
has	problems	related	to	button	and	power	supply.	The	Data	Science	team	can	track	down
these	reviews	and	find	out	if	that’s	really	the	case.

Figure	9.15	provides	a	different	way	to	visualize	the	topics.	Five	topics	are	extracted	from
five-star	 reviews	 and	 one-star	 reviews,	 respectively.	 In	 an	 interactive	 environment,
hovering	 the	 mouse	 on	 a	 topic	 highlights	 the	 corresponding	 words	 in	 this	 topic.	 The

screenshots	in	Figure	9.15	were	taken	when	Topic	4	 is	highlighted	for	both	groups.	The
weight	of	a	word	in	a	topic	is	indicated	by	the	disc	size.

Figure	9.15	Five	topics	on	five-star	reviews	(left)	and	1-star	reviews	(right)

The	Data	Science	 team	has	also	conducted	 sentiment	analysis	over	100	 tweets	 from	 the
popular	 microblogging	 site	 Twitter.	 The	 result	 is	 shown	 in	 Figure	 9.16.	 The	 left	 side
represents	 negative	 sentiments,	 and	 the	 right	 side	 represents	 positive	 sentiments.
Vertically,	 the	 tweets	 have	 been	 randomly	 placed	 for	 aesthetic	 purposes.	 Each	 tweet	 is
shown	as	a	disc,	where	the	size	represents	the	number	of	followers	of	the	user	who	made
the	original	tweet.	The	color	shade	of	a	disc	represents	how	frequently	this	tweet	has	been
retweeted.	The	figure	indicates	that	most	customers	are	satisfied	with	ACME’s	bPhone.

Figure	9.16	Sentiment	analysis	on	Tweets	related	to	bPhone

Summary
This	chapter	has	discussed	several	subtasks	of	text	analysis,	including	parsing,	search	and
retrieval,	and	 text	mining.	With	a	brand	management	example,	 the	chapter	 talks	about	a
typical	text	analysis	process:	(1)	collecting	raw	text,	(2)	representing	text,	(3)	using	TFIDF
to	compute	the	usefulness	of	each	word	in	the	texts,	(4)	categorizing	documents	by	topics
using	topic	modeling,	(5)	sentiment	analysis,	and	(6)	gaining	greater	insights.

Overall	text	analysis	is	no	trivial	task.	Corresponding	to	the	Data	Analytic	Lifecycle,	the
most	time-consuming	parts	of	a	text	analysis	project	often	are	not	performing	the	statistics
or	 implementing	 algorithms.	 Chances	 are	 the	 team	 would	 spend	 most	 of	 the	 time
formulating	the	problem,	getting	the	data,	and	preparing	the	data.

Exercises
	
1.	 What	are	the	main	challenges	of	text	analysis?
2.	 What	is	a	corpus?
3.	 What	are	common	words	(such	as	a,	and,	of)	called?
4.	 Why	can’t	we	use	TF	alone	to	measure	the	usefulness	of	the	words?
5.	 What	is	a	caveat	of	IDF?	How	does	TFIDF	address	the	problem?
6.	 Name	three	benefits	of	using	the	TFIDF.
7.	 What	methods	can	be	used	for	sentiment	analysis?
8.	 What	is	the	definition	of	topic	in	topic	models?
9.	 Explain	the	trade-offs	for	precision	and	recall.
10.	 Perform	LDA	topic	modeling	on	the	Reuters-21578	corpus	using	Python	and	LDA.

The	NLTK	has	already	come	with	the	Reuters-21578	corpus.	To	import	this	corpus,
enter	the	following	comment	in	the	Python	prompt:

from	nltk.corpus	import	reuters

The	LDA	has	already	been	implemented	by	several	Python	libraries	such	as
gensim	[45].	Either	use	one	such	library	or	implement	your	own	LDA	to
perform	topic	modeling	on	the	Reuters-21578	corpus.

11.	 Choose	a	topic	of	your	interest,	such	as	a	movie,	a	celebrity,	or	any	buzz	word.	Then
collect	100	tweets	related	to	this	topic.	Hand-tag	them	as	positive,	neutral,	or
negative.	Next,	split	them	into	80	tweets	as	the	training	set	and	the	remaining	20	as
the	testing	set.	Run	one	or	more	classifiers	over	these	tweets	to	perform	sentiment
analysis.	What	are	the	precision	and	recall	of	these	classifiers?	Which	classifier
performs	better	than	the	others?

Bibliography
	
1.	 [1]	Dr.	Seuss,	“Green	Eggs	and	Ham,”	New	York,	NY,	USA,	Random	House,	1960.

2.	 [2]	M.	Steinbach,	G.	Karypis,	and	V.	Kumar,	“A	Comparison	of	Document	Clustering
Techniques,”	KDD	Workshop	on	Text	Mining,	2000.

3.	 [3]	“The	Penn	Treebank	Project,”	University	of	Pennsylvania	[Online].	Available:
http://www.cis	.upenn.edu/˜treebank/home.html.	[Accessed	26	March	2014].

4.	 [4]	Wikipedia,	“List	of	Open	APIs”	[Online].	Available:
http://en.wikipedia.org/wiki/List_of_open_APIs.	[Accessed	27	March	2014].

5.	 [5]	ProgrammableWeb,	“API	Directory”	[Online].	Available:
http://www.programmableweb.com/apis/directory.	[Accessed	27	March	2014].

6.	 [6]	Twitter,	“Twitter	Developers	Site”	[Online].	Available:
https://dev.twitter.com/.	[Accessed	27	March	2014].

7.	 [7]	“Curl	and	libcurl	Tools”	[Online].	Available:	http://curl.haxx.se/.	[Accessed
27	March	2014].

8.	 [8]	“XML	Path	Language	(XPath)	2.0,”	World	Wide	Web	Consortium,	14	December
2010.	[Online].	Available:	http://www.w3.org/TR/xpath20/.	[Accessed	27	March
2014].

9.	 [9]	“Gnip:	The	Source	for	Social	Data,”	GNIP	[Online].	Available:
http://gnip.com/.	[Accessed	12	June	2014].

10.	 [10]	“DataSift:	Power	Decisions	with	Social	Data,”	DataSift	[Online].	Available:
http://datasift.com/.	[Accessed	12	June	2014].

11.	 [11]	G.	Salton	and	C.	Buckley,	“Term-Weighting	Approaches	in	Automatic	Text
Retrieval,”	in	Information	Processing	and	Management,	1988,	pp.	513–523.

12.	 [12]	G.	K.	Zipf,	Human	Behavior	and	the	Principle	of	Least	Effort,	Reading,	MA:
Addison-Wesley,	1949.

13.	 [13]	M.	E.	Newman,	“Power	Laws,	Pareto	Distributions,	and	Zipf’s	Law,”
Contemporary	Physics,	vol.	46,	no.	5,	pp.	323–351,	2005.

14.	 [14]	Y.	Li,	D.	McLean,	Z.	A.	Bandar,	J.	D.	O’Shea,	and	K.	Crockett,	“Sentence
Similarity	Based	on	Semantic	Nets	and	Corpus	Statistics,”	IEEE	Transactions	on
Knowledge	and	Data	Engineering,	vol.	18,	no.	8,	pp.	1138–1150,	2006.

15.	 [15]	W.	N.	Francis	and	H.	Kucera,	“Brown	Corpus	Manual,”	1979.	[Online].
Available:	http://icame.uib.no/brown/bcm.html.

16.	 [16]	“Critical	Assessment	of	Information	Extraction	in	Biology	(BioCreative)”
[Online].	Available:	http://www.biocreative.org/.	[Accessed	2	April	2014].

17.	 [17]	J.	J.	Godfrey	and	E.	Holliman,	“Switchboard-1	Release	2,”	Linguistic	Data

http://www.cis .upenn.edu/~treebank/home.html
http://en.wikipedia.org/wiki/List_of_open_APIs
http://www.programmableweb.com/apis/directory
https://dev.twitter.com/
http://curl.haxx.se/
http://www.w3.org/TR/xpath20/
http://gnip.com/
http://datasift.com/
http://icame.uib.no/brown/bcm.html
http://www.biocreative.org/

Consortium,	Philadelphia,	1997.	[Online].	Available:
http://catalog.ldc.upenn.edu/LDC97S62.	[Accessed	2	April	2014].

18.	 [18]	P.	Koehn,	“Europarl:	A	Parallel	Corpus	for	Statistical	Machine	Translation,”	MT
Summit,	2005.

19.	 [19]	N.	Seco,	T.	Veale,	and	J.	Hayes,	“An	Intrinsic	Information	Content	Metric	for
Semantic	Similarity	in	WordNet,”	ECAI,	vol.	16,	pp.	1089–1090,	2004.

20.	 [20]	P.	Resnik,	“Using	Information	Content	to	Evaluate	Semantic	Similarity	in	a
Taxonomy,”	In	Proceedings	of	the	14th	International	Joint	Conference	on	Artificial
Intelligence	(IJCAI‘95),	vol.	1,	pp.	448–453,	1995.

21.	 [21]	T.	Pedersen,	“Information	Content	Measures	of	Semantic	Similarity	Perform
Better	Without	Sense-Tagged	Text,”	Human	Language	Technologies:	The	2010
Annual	Conference	of	the	North	American	Chapter	of	the	Association	for
Computational	Linguistics,	pp.	329–332,	June	2010.

22.	 [22]	C.	D.	Manning,	P.	Raghavan,	and	H.	Schütze,	“Document	and	Query	Weighting
Schemes,”	in	Introduction	to	Information	Retrieval,	Cambridge,	United	Kingdom,
Cambridge	University	Press,	2008,	p.	128.

23.	 [23]	M.	Porter,	“Porter’s	English	Stop	Word	List,”	12	February	2007.	[Online].
Available:	http://snowball.tartarus.org/algorithms/english/stop.txt.
[Accessed	2	April	2014].

24.	 [24]	M.	Steinbach,	G.	Karypis,	and	V.	Kumar,	“A	Comparison	of	Document
Clustering	Techniques,”	KDD	workshop	on	text	mining,	vol.	400,	no.	1,	2000.

25.	 [25]	T.	Joachims,	“Transductive	Inference	for	Text	Classification	Using	Support
Vector	Machines,”	ICML,	vol.	99,	pp.	200–209,	1999.

26.	 [26]	P.	Soucy	and	G.	W.	Mineau,	“A	Simple	KNN	Algorithm	for	Text
Categorization,”	ICDM,	pp.	647–648,	2001.

27.	 [27]	B.	Liu,	X.	Li,	W.	S.	Lee,	and	P.	S.	Yu,	“Text	Classification	by	Labeling	Words,”
AAAI,	vol.	4,	pp.	425–430,	2004.

28.	 [28]	D.	M.	Blei,	“Probabilistic	Topic	Models,”	Communications	of	the	ACM,	vol.	55,
no.	4,	pp.	77–84,	2012.

29.	 [29]	D.	M.	Blei,	A.	Y.	Ng,	and	M.	I.	Jordan,	“Latent	Dirichlet	Allocation,”	Journal	of
Machine	Learning	Research,	vol.	3,	pp.	993–1022,	2003.

30.	 [30]	T.	Minka,	“Estimating	a	Dirichlet	Distribution,”	2000.

31.	 [31]	J.	Chang,	“lda:	Collapsed	Gibbs	Sampling	Methods	for	Topic	Models,”	CRAN,
14	October	2012.	[Online].	Available:	http://cran.r-
project.org/web/packages/lda/.	[Accessed	3	April	2014].

32.	 [32]	D.	M.	Blei,	“Topic	Modeling	Software”	[Online].	Available:
http://www.cs.princeton.edu/˜blei/	topicmodeling.html.	[Accessed	11	June
2014].

http://catalog.ldc.upenn.edu/LDC97S62
http://snowball.tartarus.org/algorithms/english/stop.txt
http://cran.r-project.org/web/packages/lda/
http://www.cs.princeton.edu/~blei/ topicmodeling.html

33.	 [33]	A.	McCallum,	K.	Nigam,	J.	Rennie,	and	K.	Seymore,	“A	Machine	Learning
Approach	to	Building	Domain-Specific	Search	Engines,”	IJCAI,	vol.	99,	1999.

34.	 [34]	P.	D.	Turney,	“Thumbs	Up	or	Thumbs	Down?	Semantic	Orientation	Applied	to
Unsupervised	Classification	of	Reviews,”	Proceedings	of	the	Association	for
Computational	Linguistics,	pp.	417–424,	2002.

35.	 [35]	B.	Pang,	L.	Lee,	and	S.	Vaithyanathan,	“Thumbs	Up?	Sentiment	Classification
Using	Machine	Learning	Techniques,”	Proceedings	of	EMNLP,	pp.	79–86,	2002.

36.	 [36]	M.	Hu	and	B.	Liu,	“Mining	and	Summarizing	Customer	Reviews,”	Proceedings
of	the	Tenth	ACM	SIGKDD	International	Conference	on	Knowledge	Discovery	and
Data	Mining,	pp.	168–177,	2004.

37.	 [37]	A.	Agarwal,	F.	Biadsy,	and	K.	R.	Mckeown,	“Contextual	Phrase-Level	Polarity
Analysis	Using	Lexical	Affect	Scoring	and	Syntactic	N-Grams,”	Proceedings	of	the
12th	Conference	of	the	European	Chapter	of	the	Association	for	Computational
Linguistics,	pp.	24–32,	2009.

38.	 [38]	B.	O’Connor,	R.	Balasubramanyan,	B.	R.	Routledge,	and	N.	A.	Smith,	“From
Tweets	to	Polls:	Linking	Text	Sentiment	to	Public	Opinion	Time	Series,”
Proceedings	of	the	Fourth	International	Conference	on	Weblogs	and	Social	Media,
ICWSM	‘10,	pp.	122–129,	2010.

39.	 [39]	A.	Agarwal,	B.	Xie,	I.	Vovsha,	O.	Rambow	and	R.	Passonneau,	“Sentiment
Analysis	of	Twitter	Data,”	In	Proceedings	of	the	Workshop	on	Languages	in	Social
Media,	pp.	30–38,	2011.

40.	 [40]	H.	Saif,	Y.	He,	and	H.	Alani,	“Semantic	Sentiment	Analysis	of	Twitter,”
Proceedings	of	the	11th	International	Conference	on	The	Semantic	Web	(ISWC‘12),
pp.	508–524,	2012.

41.	 [41]	A.	Go,	R.	Bhayani,	and	L.	Huang,	“Twitter	Sentiment	Classification	Using
Distant	Supervision,”	CS224N	Project	Report,	Stanford,	pp.	1–12,	2009.

42.	 [42]	A.	Pak	and	P.	Paroubek,	“Twitter	as	a	Corpus	for	Sentiment	Analysis	and
Opinion	Mining,”	Proceedings	of	the	Seventh	International	Conference	on	Language
Resources	and	Evaluation	(LREC‘10),	pp.	19–21,	2010.

43.	 [43]	B.	Pang	and	L.	Lee,	“Opinion	Mining	and	Sentiment	Analysis,”	Foundations
and	Trends	in	Information	Retrieval,	vol.	2,	no.	1–2,	pp.	1–135,	2008.

44.	 [44]	“Amazon	Mechanical	Turk”	[Online].	Available:	http://www.mturk.com/.
[Accessed	7	April	2014].

45.	 [45]	R.	Řehůřek,	“Python	Gensim	Library”	[Online].	Available:
http://radimrehurek.com/gensim/.	[Accessed	8	April	2014].

http://www.mturk.com/
http://radimrehurek.com/gensim/

Chapter	10
Advanced	Analytics—Technology	and	Tools:	MapReduce
and	Hadoop

Key	Concepts
1.	 Hadoop
2.	 Hadoop	Ecosystem
3.	 MapReduce
4.	 NoSQL

Chapter	 4,	 “Advanced	Analytical	Theory	 and	Methods:	Clustering,”	 through	Chapter	 9,
“Advanced	 Analytical	 Theory	 and	 Methods:	 Text	 Analysis,”	 covered	 several	 useful
analytical	 methods	 to	 classify,	 predict,	 and	 examine	 relationships	 within	 the	 data.	 This
chapter	 and	 Chapter	 11,	 “Advanced	 Analytics—Technology	 and	 Tools:	 In-Database
Analytics,”	address	several	aspects	of	collecting,	storing,	and	processing	unstructured	and
structured	 data,	 respectively.	 This	 chapter	 presents	 some	 key	 technologies	 and	 tools
related	 to	 the	 Apache	 Hadoop	 software	 library,	 “a	 framework	 that	 allows	 for	 the
distributed	 processing	 of	 large	 datasets	 across	 clusters	 of	 computers	 using	 simple
programming	models”	[1].

This	chapter	focuses	on	how	Hadoop	stores	data	in	a	distributed	system	and	how	Hadoop
implements	a	simple	programming	paradigm	known	as	MapReduce.	Although	this	chapter
makes	some	Java-specific	references,	the	only	intended	prerequisite	knowledge	is	a	basic
understanding	 of	 programming.	 Furthermore,	 the	 Java-specific	 details	 of	 writing	 a
MapReduce	program	for	Apache	Hadoop	are	beyond	the	scope	of	this	text.	This	omission
may	 appear	 troublesome,	 but	 tools	 in	 the	 Hadoop	 ecosystem,	 such	 as	 Apache	 Pig	 and
Apache	 Hive,	 can	 often	 eliminate	 the	 need	 to	 explicitly	 code	 a	 MapReduce	 program.
Along	 with	 other	 Hadoop-related	 tools,	 Pig	 and	 Hive	 are	 covered	 in	 a	 portion	 of	 this
chapter	dealing	with	the	Hadoop	ecosystem.

To	illustrate	the	power	of	Hadoop	in	handling	unstructured	data,	the	following	discussion
provides	several	Hadoop	use	cases.

10.1	Analytics	for	Unstructured	Data
Prior	 to	 conducting	 data	 analysis,	 the	 required	 data	must	 be	 collected	 and	 processed	 to
extract	 the	 useful	 information.	 The	 degree	 of	 initial	 processing	 and	 data	 preparation
depends	 on	 the	 volume	 of	 data,	 as	 well	 as	 how	 straightforward	 it	 is	 to	 understand	 the
structure	of	the	data.

Recall	the	four	types	of	data	structures	discussed	in	Chapter	1,	“Introduction	to	Big	Data
Analytics”:

	
Structured:	A	specific	and	consistent	format	(for	example,	a	data	table)
Semi-structured:	A	self-describing	format	(for	example,	an	XML	file)
Quasi-structured:	A	somewhat	inconsistent	format	(for	example,	a	hyperlink)
Unstructured:	An	inconsistent	format	(for	example,	text	or	video)

Structured	 data,	 such	 as	 relational	 database	 management	 system	 (RDBMS)	 tables,	 is
typically	 the	easiest	data	 format	 to	 interpret.	However,	 in	practice	 it	 is	 still	necessary	 to
understand	the	various	values	that	may	appear	in	a	certain	column	and	what	these	values
represent	in	different	situations	(based,	for	example,	on	the	contents	of	the	other	columns
for	the	same	record).	Also,	some	columns	may	contain	unstructured	text	or	stored	objects,
such	 as	 pictures	 or	 videos.	 Although	 the	 tools	 presented	 in	 this	 chapter	 focus	 on
unstructured	data,	these	tools	can	also	be	utilized	for	more	structured	datasets.

10.1.1	Use	Cases
The	 following	 material	 provides	 several	 use	 cases	 for	 MapReduce.	 The	 MapReduce
paradigm	offers	 the	means	 to	break	a	 large	 task	 into	smaller	 tasks,	 run	 tasks	 in	parallel,
and	consolidate	 the	outputs	of	 the	 individual	 tasks	 into	 the	final	output.	Apache	Hadoop
includes	 a	 software	 implementation	 of	 MapReduce.	 More	 details	 on	 MapReduce	 and
Hadoop	are	provided	later	in	this	chapter.

IBM	Watson

In	 2011,	 IBM’s	 computer	 system	Watson	participated	 in	 the	U.S.	 television	 game	 show
Jeopardy	against	two	of	the	best	Jeopardy	champions	in	the	show’s	history.	In	the	game,
the	contestants	are	provided	a	clue	such	as	“He	likes	his	martinis	shaken,	not	stirred”	and
the	correct	response,	phrased	in	the	form	of	a	question,	would	be,	“Who	is	James	Bond?”
Over	the	three-day	tournament,	Watson	was	able	to	defeat	the	two	human	contestants.

To	 educate	 Watson,	 Hadoop	 was	 utilized	 to	 process	 various	 data	 sources	 such	 as
encyclopedias,	 dictionaries,	 news	 wire	 feeds,	 literature,	 and	 the	 entire	 contents	 of
Wikipedia	 [2].	 For	 each	 clue	 provided	 during	 the	 game,	 Watson	 had	 to	 perform	 the
following	tasks	in	less	than	three	seconds	[3]:

	
Deconstruct	the	provided	clue	into	words	and	phrases
Establish	the	grammatical	relationship	between	the	words	and	the	phrases

Create	a	set	of	similar	terms	to	use	in	Watson’s	search	for	a	response
Use	Hadoop	to	coordinate	the	search	for	a	response	across	terabytes	of	data
Determine	possible	responses	and	assign	their	likelihood	of	being	correct
Actuate	the	buzzer
Provide	a	syntactically	correct	response	in	English

Among	 other	 applications,	Watson	 is	 being	 used	 in	 the	medical	 profession	 to	 diagnose
patients	and	provide	treatment	recommendations	[4].

LinkedIn

LinkedIn	 is	 an	 online	 professional	 network	 of	 250	million	 users	 in	 200	 countries	 as	 of
early	 2014	 [5].	 LinkedIn	 provides	 several	 free	 and	 subscription-based	 services,	 such	 as
company	information	pages,	job	postings,	talent	searches,	social	graphs	of	one’s	contacts,
personally	tailored	news	feeds,	and	access	to	discussion	groups,	including	a	Hadoop	users
group.	LinkedIn	utilizes	Hadoop	for	the	following	purposes	[6]:

	
Process	daily	production	database	transaction	logs
Examine	the	users’	activities	such	as	views	and	clicks
Feed	the	extracted	data	back	to	the	production	systems
Restructure	the	data	to	add	to	an	analytical	database
Develop	and	test	analytical	models

Yahoo!

As	 of	 2012,	Yahoo!	 has	 one	 of	 the	 largest	 publicly	 announced	Hadoop	 deployments	 at
42,000	nodes	across	several	clusters	utilizing	350	petabytes	of	raw	storage	[7].	Yahoo!‘s
Hadoop	applications	include	the	following	[8]:

	
Search	index	creation	and	maintenance
Web	page	content	optimization
Web	ad	placement	optimization
Spam	filters
Ad-hoc	analysis	and	analytic	model	development

Prior	to	deploying	Hadoop,	it	took	26	days	to	process	three	years’	worth	of	log	data.	With
Hadoop,	the	processing	time	was	reduced	to	20	minutes.

10.1.2	MapReduce
As	mentioned	earlier,	the	MapReduce	paradigm	provides	the	means	to	break	a	large	task
into	smaller	 tasks,	run	the	tasks	in	parallel,	and	consolidate	the	outputs	of	 the	individual
tasks	into	the	final	output.	As	its	name	implies,	MapReduce	consists	of	two	basic	parts—a
map	step	and	a	reduce	step—detailed	as	follows:

Map:

	
Applies	an	operation	to	a	piece	of	data
Provides	some	intermediate	output

Reduce:

	
Consolidates	the	intermediate	outputs	from	the	map	steps
Provides	the	final	output

Each	step	uses	key/value	pairs,	denoted	as	<key,	value>,	as	input	and	output.	It	is	useful
to	think	of	the	key/value	pairs	as	a	simple	ordered	pair.	However,	the	pairs	can	take	fairly
complex	 forms.	 For	 example,	 the	 key	 could	 be	 a	 filename,	 and	 the	 value	 could	 be	 the
entire	contents	of	the	file.

The	simplest	 illustration	of	MapReduce	 is	a	word	count	example	 in	which	 the	 task	 is	 to
simply	 count	 the	 number	 of	 times	 each	word	 appears	 in	 a	 collection	 of	 documents.	 In
practice,	the	objective	of	such	an	exercise	is	to	establish	a	list	of	words	and	their	frequency
for	purposes	of	search	or	establishing	the	relative	importance	of	certain	words.	Chapter	9
provides	more	details	on	text	analytics.	Figure	10.1	illustrates	the	MapReduce	processing
for	a	single	input—in	this	case,	a	line	of	text.

Figure	10.1	Example	of	how	MapReduce	works

In	 this	 example,	 the	map	 step	 parses	 the	 provided	 text	 string	 into	 individual	words	 and
emits	 a	 set	 of	 key/value	 pairs	 of	 the	 form	 <word,	 1>.	 For	 each	 unique	 key—in	 this
example,	 word—the	 reduce	 step	 sums	 the	 1	 values	 and	 outputs	 the	 <word,	 count>

key/value	pairs.	Because	the	word	each	appeared	twice	in	the	given	line	of	text,	the	reduce
step	provides	a	corresponding	key/value	pair	of	<each,	2>.

It	 should	 be	 noted	 that,	 in	 this	 example,	 the	 original	 key,	 1234,	 is	 ignored	 in	 the
processing.	In	a	typical	word	count	application,	the	map	step	may	be	applied	to	millions	of
lines	of	text,	and	the	reduce	step	will	summarize	the	key/value	pairs	generated	by	all	the

map	steps.

Expanding	on	the	word	count	example,	the	final	output	of	a	MapReduce	process	applied
to	a	set	of	documents	might	have	the	key	as	an	ordered	pair	and	the	value	as	an	ordered
tuple	of	length	2n.	A	possible	representation	of	such	a	key/value	pair	follows:
<(filename,	datetime),(word1,5,	word2,7,…	,	wordn,6)>

In	 this	 construction,	 the	 key	 is	 the	 ordered	 pair	 filename	 and	 datetime.	 The	 value
consists	of	the	n	pairs	of	the	words	and	their	individual	counts	in	the	corresponding	file.

Of	 course,	 a	 word	 count	 problem	 could	 be	 addressed	 in	 many	 ways	 other	 than
MapReduce.	 However,	 MapReduce	 has	 the	 advantage	 of	 being	 able	 to	 distribute	 the
workload	over	a	cluster	of	computers	and	run	 the	 tasks	 in	parallel.	 In	a	word	count,	 the
documents,	 or	 even	pieces	of	 the	documents,	 could	be	processed	 simultaneously	during
the	map	step.	A	key	characteristic	of	MapReduce	is	that	the	processing	of	one	portion	of
the	input	can	be	carried	out	independently	of	the	processing	of	the	other	inputs.	Thus,	the
workload	can	be	easily	distributed	over	a	cluster	of	machines.

U.S.	Navy	 rear	 admiral	Grace	Hopper	 (1906–1992),	who	was	 a	 pioneer	 in	 the	 field	 of
computers,	 provided	 one	 of	 the	 best	 explanations	 of	 the	 need	 for	 using	 a	 group	 of
computers.	 She	 commented	 that	 during	 preindustrial	 times,	 oxen	 were	 used	 for	 heavy
pulling,	but	when	one	ox	couldn’t	budge	a	log,	people	didn’t	try	to	raise	a	larger	ox;	they
added	more	oxen.	Her	point	was	that	as	computational	problems	grow,	instead	of	building
a	bigger,	more	powerful,	and	more	expensive	computer,	a	better	alternative	 is	 to	build	a
system	 of	 computers	 to	 share	 the	 workload.	 Thus,	 in	 the	 MapReduce	 context,	 a	 large
processing	task	would	be	distributed	across	many	computers.

Although	the	concept	of	MapReduce	has	existed	for	decades,	Google	led	the	resurgence	in
its	interest	and	adoption	starting	in	2004	with	the	published	work	by	Dean	and	Ghemawat
[9].	This	paper	described	Google’s	approach	for	crawling	the	web	and	building	Google’s
search	 engine.	 As	 the	 paper	 describes,	 MapReduce	 has	 been	 used	 in	 functional
programming	languages	such	as	Lisp,	which	obtained	its	name	from	being	readily	able	to
process	lists	(List	processing).

In	 2007,	 a	well-publicized	MapReduce	 use	 case	was	 the	 conversion	 of	 11	million	New
York	Times	newspaper	articles	from	1851	to	1980	into	PDF	files.	The	intent	was	to	make
the	 PDF	 files	 openly	 available	 to	 users	 on	 the	 Internet.	 After	 some	 development	 and
testing	 of	 the	 MapReduce	 code	 on	 a	 local	 machine,	 the	 11	 million	 PDF	 files	 were
generated	on	a	100-node	cluster	in	about	24	hours	[10].

What	allowed	the	development	of	the	MapReduce	code	and	its	execution	to	proceed	easily
was	that	the	MapReduce	paradigm	had	already	been	implemented	in	Apache	Hadoop.

10.1.3	Apache	Hadoop
Although	MapReduce	is	a	simple	paradigm	to	understand,	it	is	not	as	easy	to	implement,
especially	in	a	distributed	system.	Executing	a	MapReduce	job	(the	MapReduce	code	run
against	 some	 specified	 data)	 requires	 the	 management	 and	 coordination	 of	 several
activities:

	

MapReduce	jobs	need	to	be	scheduled	based	on	the	system’s	workload.
Jobs	need	to	be	monitored	and	managed	to	ensure	that	any	encountered	errors	are
properly	handled	so	that	the	job	continues	to	execute	if	the	system	partially	fails.
Input	data	needs	to	be	spread	across	the	cluster.
Map	step	processing	of	the	input	needs	to	be	conducted	across	the	distributed	system,
preferably	on	the	same	machines	where	the	data	resides.
Intermediate	outputs	from	the	numerous	map	steps	need	to	be	collected	and	provided
to	the	proper	machines	for	the	reduce	step	execution.
Final	output	needs	to	be	made	available	for	use	by	another	user,	another	application,
or	perhaps	another	MapReduce	job.

Fortunately,	 Apache	 Hadoop	 handles	 these	 activities	 and	 more.	 Furthermore,	 many	 of
these	activities	are	transparent	to	the	developer/user.	The	following	material	examines	the
implementation	of	MapReduce	in	Hadoop,	an	open	source	project	managed	and	licensed
by	the	Apache	Software	Foundation	[11].

The	origins	of	Hadoop	began	as	a	search	engine	called	Nutch,	developed	by	Doug	Cutting
and	Mike	Cafarella.	Based	on	two	Google	papers	[9]	[12],	versions	of	MapReduce	and	the
Google	File	System	were	 added	 to	Nutch	 in	 2004.	 In	 2006,	Yahoo!	 hired	Cutting,	who
helped	 to	develop	Hadoop	based	on	 the	 code	 in	Nutch	 [13].	The	name	“Hadoop”	came
from	 the	 name	 of	 Cutting’s	 child’s	 stuffed	 toy	 elephant	 that	 also	 inspired	 the	 well-
recognized	symbol	for	the	Hadoop	project.

Next,	an	overview	of	how	data	is	stored	in	a	Hadoop	environment	is	presented.

Hadoop	Distributed	File	System	(HDFS)

Based	on	the	Google	File	System	[12],	the	Hadoop	Distributed	File	System	(HDFS)	is	a
file	system	that	provides	the	capability	to	distribute	data	across	a	cluster	to	take	advantage
of	 the	 parallel	 processing	 of	 MapReduce.	 HDFS	 is	 not	 an	 alternative	 to	 common	 file
systems,	 such	 as	 ext3,	 ext4,	 and	XFS.	 In	 fact,	HDFS	 depends	 on	 each	 disk	 drive’s	 file
system	 to	 manage	 the	 data	 being	 stored	 to	 the	 drive	 media.	 The	 Hadoop	 Wiki	 [14]
provides	more	details	on	disk	configuration	options	and	considerations.

For	a	given	file,	HDFS	breaks	the	file,	say,	into	64	MB	blocks	and	stores	the	blocks	across
the	cluster.	So,	if	a	file	size	is	300	MB,	the	file	is	stored	in	five	blocks:	four	64	MB	blocks
and	one	44	MB	block.	If	a	file	size	is	smaller	than	64	MB,	the	block	is	assigned	the	size	of
the	file.

Whenever	possible,	HDFS	attempts	to	store	the	blocks	for	a	file	on	different	machines	so
the	map	step	can	operate	on	each	block	of	a	file	in	parallel.	Also,	by	default,	HDFS	creates
three	copies	of	each	block	across	the	cluster	to	provide	the	necessary	redundancy	in	case
of	a	 failure.	 If	 a	machine	 fails,	HDFS	 replicates	an	accessible	copy	of	 the	 relevant	data
blocks	 to	 another	 available	 machine.	 HDFS	 is	 also	 rack	 aware,	 which	 means	 that	 it
distributes	the	blocks	across	several	equipment	racks	to	prevent	an	entire	rack	failure	from
causing	 a	 data	 unavailable	 event.	 Additionally,	 the	 three	 copies	 of	 each	 block	 allow
Hadoop	 some	 flexibility	 in	 determining	 which	 machine	 to	 use	 for	 the	 map	 step	 on	 a
particular	block.	For	example,	an	idle	or	underutilized	machine	that	contains	a	data	block

to	be	processed	can	be	scheduled	to	process	that	data	block.

To	manage	 the	 data	 access,	HDFS	utilizes	 three	 Java	 daemons	 (background	 processes):
NameNode,	 DataNode,	 and	 Secondary	 NameNode.	 Running	 on	 a	 single	 machine,	 the
NameNode	 daemon	 determines	 and	 tracks	 where	 the	 various	 blocks	 of	 a	 data	 file	 are
stored.	 The	DataNode	 daemon	 manages	 the	 data	 stored	 on	 each	 machine.	 If	 a	 client
application	wants	 to	access	a	particular	file	stored	in	HDFS,	 the	application	contacts	 the
NameNode,	and	the	NameNode	provides	the	application	with	the	locations	of	the	various
blocks	for	that	file.	The	application	then	communicates	with	the	appropriate	DataNodes	to
access	the	file.

Each	DataNode	periodically	builds	a	report	about	the	blocks	stored	on	the	DataNode	and
sends	 the	 report	 to	 the	 NameNode.	 If	 one	 or	 more	 blocks	 are	 not	 accessible	 on	 a
DataNode,	the	NameNode	ensures	that	an	accessible	copy	of	an	inaccessible	data	block	is
replicated	 to	 another	 machine.	 For	 performance	 reasons,	 the	 NameNode	 resides	 in	 a
machine’s	 memory.	 Because	 the	 NameNode	 is	 critical	 to	 the	 operation	 of	 HDFS,	 any
unavailability	or	corruption	of	the	NameNode	results	in	a	data	unavailability	event	on	the
cluster.	 Thus,	 the	 NameNode	 is	 viewed	 as	 a	 single	 point	 of	 failure	 in	 the	 Hadoop
environment	 [15].	 To	 minimize	 the	 chance	 of	 a	 NameNode	 failure	 and	 to	 improve
performance,	the	NameNode	is	typically	run	on	a	dedicated	machine.

A	 third	daemon,	 the	Secondary	NameNode,	 provides	 the	 capability	 to	perform	 some	of
the	NameNode	tasks	to	reduce	the	load	on	the	NameNode.	Such	tasks	include	updating	the
file	system	image	with	the	contents	of	the	file	system	edit	logs.	It	is	important	to	note	that
the	 Secondary	 NameNode	 is	 not	 a	 backup	 or	 redundant	 NameNode.	 In	 the	 event	 of	 a
NameNode	 outage,	 the	 NameNode	 must	 be	 restarted	 and	 initialized	 with	 the	 last	 file
system	image	file	and	the	contents	of	the	edits	logs.	The	latest	versions	of	Hadoop	provide
an	HDFS	High	Availability	(HA)	feature.	This	feature	enables	the	use	of	two	NameNodes:
one	in	an	active	state,	and	the	other	 in	a	standby	state.	If	an	active	NameNode	fails,	 the
standby	 NameNode	 takes	 over.	 When	 using	 the	 HDFS	 HA	 feature,	 a	 Secondary
NameNode	is	unnecessary	[16].

Figure	10.2	illustrates	a	Hadoop	cluster	with	ten	machines	and	the	storage	of	one	large	file
requiring	three	HDFS	data	blocks.	Furthermore,	this	file	is	stored	using	triple	replication.
The	 machines	 running	 the	 NameNode	 and	 the	 Secondary	 NameNode	 are	 considered
master	nodes.	Because	 the	DataNodes	 take	 their	 instructions	from	the	master	nodes,	 the
machines	running	the	DataNodes	are	referred	to	as	worker	nodes.

Figure	10.2	A	file	stored	in	HDFS

Structuring	a	MapReduce	Job	in	Hadoop

Hadoop	 provides	 the	 ability	 to	 run	 MapReduce	 jobs	 as	 described,	 at	 a	 high	 level,	 in
Section	 10.1.2.	 This	 section	 offers	 specific	 details	 on	 how	 a	MapReduce	 job	 is	 run	 in
Hadoop.	A	 typical	MapReduce	program	 in	Java	consists	of	 three	classes:	 the	driver,	 the
mapper,	and	the	reducer.

The	driver	provides	details	such	as	input	file	locations,	the	provisions	for	adding	the	input
file	to	the	map	task,	the	names	of	the	mapper	and	reducer	Java	classes,	and	the	location	of
the	 reduce	 task	 output.	 Various	 job	 configuration	 options	 can	 also	 be	 specified	 in	 the
driver.	For	example,	the	number	of	reducers	can	be	manually	specified	in	the	driver.	Such
options	 are	 useful	 depending	 on	 how	 the	MapReduce	 job	 output	 will	 be	 used	 in	 later
downstream	processing.

The	mapper	provides	 the	 logic	 to	be	processed	on	each	data	block	corresponding	 to	 the
specified	 input	 files	 in	 the	 driver	 code.	 For	 example,	 in	 the	 word	 count	 MapReduce
example	provided	earlier,	a	map	task	is	instantiated	on	a	worker	node	where	a	data	block
resides.	Each	map	 task	 processes	 a	 fragment	 of	 the	 text,	 line	 by	 line,	 parses	 a	 line	 into
words,	and	emits	<word,	1>	for	each	word,	regardless	of	how	many	times	word	appears	in
the	line	of	text.	The	key/value	pairs	are	stored	temporarily	in	the	worker	node’s	memory
(or	cached	to	the	node’s	disk).

Next,	the	key/value	pairs	are	processed	by	the	built-in	shuffle	and	sort	functionality	based
on	 the	 number	 of	 reducers	 to	 be	 executed.	 In	 this	 simple	 example,	 there	 is	 only	 one

reducer.	So,	all	the	intermediate	data	is	passed	to	it.	From	the	various	map	task	outputs,	for
each	unique	key,	arrays	(lists	 in	Java)	of	 the	associated	values	in	the	key/value	pairs	are
constructed.	Also,	Hadoop	ensures	that	the	keys	are	passed	to	each	reducer	in	sorted	order.
In	Figure	10.3,	<each,(1,1)>	is	the	first	key/value	pair	processed,	followed	alphabetically
by	<For,(1)>	and	the	rest	of	the	key/value	pairs	until	the	last	key/value	pair	is	passed	to
the	reducer.	The	()	denotes	a	list	of	values	which,	in	this	case,	is	just	an	array	of	ones.

Figure	10.3	Shuffle	and	sort

In	general,	each	reducer	processes	 the	values	for	each	key	and	emits	a	key/value	pair	as
defined	by	the	reduce	logic.	The	output	is	then	stored	in	HDFS	like	any	other	file	in,	say,
64	MB	blocks	replicated	three	times	across	the	nodes.

Additional	Considerations	in	Structuring	a	MapReduce	Job

The	 preceding	 discussion	 presented	 the	 basics	 of	 structuring	 and	 running	 a	MapReduce
job	 on	 a	 Hadoop	 cluster.	 Several	 Hadoop	 features	 provide	 additional	 functionality	 to	 a
MapReduce	job.

First,	a	combiner	is	a	useful	option	to	apply,	when	possible,	between	the	map	task	and	the
shuffle	and	sort.	Typically,	the	combiner	applies	the	same	logic	used	in	the	reducer,	but	it
also	 applies	 this	 logic	 on	 the	 output	 of	 each	 map	 task.	 In	 the	 word	 count	 example,	 a
combiner	 sums	 up	 the	 number	 of	 occurrences	 of	 each	 word	 from	 a	 mapper’s	 output.
Figure	10.4	illustrates	how	a	combiner	processes	a	single	string	in	the	simple	word	count
example.

Figure	10.4	Using	a	combiner

Thus,	 in	a	production	setting,	 instead	of	 ten	thousand	possible	<the,	1>	key/value	pairs
being	emitted	 from	 the	map	 task	 to	 the	Shuffle	and	Sort,	 the	combiner	emits	one	<the,
10000>	 key/value	 pair.	 The	 reduce	 step	 still	 obtains	 a	 list	 of	 values	 for	 each	word,	 but
instead	of	receiving	a	list	of	up	to	a	million	ones	list(1,1,…,1)	for	a	key,	the	reduce	step
obtains	a	list,	such	as	list(10000,964,…,8345),	which	might	be	as	long	as	the	number	of
map	 tasks	 that	were	 run.	 The	 use	 of	 a	 combiner	minimizes	 the	 amount	 of	 intermediate
map	output	that	the	reducer	must	store,	transfer	over	the	network,	and	process.

Another	useful	option	is	the	partitioner.	It	determines	the	reducers	that	receive	keys	and
the	corresponding	list	of	values.	Using	the	simple	word	count	example,	Figure	10.5	shows
that	 a	 partitioner	 can	 send	 every	word	 that	 begins	with	 a	 vowel	 to	 one	 reducer	 and	 the
other	words	that	begin	with	a	consonant	to	another	reducer.

Figure	10.5	Using	a	custom	partitioner

As	 a	more	 practical	 example,	 a	 user	 could	 use	 a	 partitioner	 to	 separate	 the	 output	 into
separate	files	for	each	calendar	year	for	subsequent	analysis.	Also,	a	partitioner	could	be
used	to	ensure	that	the	workload	is	evenly	distributed	across	the	reducers.	For	example,	if
a	few	keys	are	known	to	be	associated	with	a	large	majority	of	the	data,	it	may	be	useful	to

ensure	 that	 these	 keys	 go	 to	 separate	 reducers	 to	 achieve	 better	 overall	 performance.
Otherwise,	one	 reducer	might	be	assigned	 the	majority	of	 the	data,	 and	 the	MapReduce
job	will	not	complete	until	that	one	long-running	reduce	task	completes.

Developing	and	Executing	a	Hadoop	MapReduce	Program

A	 common	 approach	 to	 develop	 a	 Hadoop	MapReduce	 program	 is	 to	 write	 Java	 code
using	an	Interactive	Development	Environment	(IDE)	tool	such	as	Eclipse	[17].	Compared
to	a	plaintext	editor	or	a	command-line	interface	(CLI),	IDE	tools	offer	a	better	experience
to	write,	compile,	 test,	and	debug	code.	A	typical	MapReduce	program	consists	of	 three
Java	files:	one	each	for	the	driver	code,	map	code,	and	reduce	code.	Additional,	Java	files
can	be	written	for	the	combiner	or	the	custom	partitioner,	if	applicable.	The	Java	code	is
compiled	and	stored	as	a	Java	Archive	(JAR)	file.	This	JAR	file	is	then	executed	against
the	specified	HDFS	input	files.

Beyond	learning	the	mechanics	of	submitting	a	MapReduce	job,	three	key	challenges	to	a
new	Hadoop	developer	are	defining	the	logic	of	the	code	to	use	the	MapReduce	paradigm;
learning	the	Apache	Hadoop	Java	classes,	methods,	and	interfaces;	and	implementing	the
driver,	map,	and	reduce	functionality	 in	Java.	Some	prior	experience	with	Java	makes	 it
easier	 for	 a	 new	 Hadoop	 developer	 to	 focus	 on	 learning	 Hadoop	 and	 writing	 the
MapReduce	job.

For	users	who	prefer	to	use	a	programming	language	other	than	Java,	there	are	some	other
options.	One	option	is	to	use	the	Hadoop	Streaming	API,	which	allows	the	user	to	write
and	run	Hadoop	jobs	with	no	direct	knowledge	of	Java	[18].	However,	knowledge	of	some
other	programming	language,	such	as	Python,	C,	or	Ruby,	 is	necessary.	Apache	Hadoop
provides	the	Hadoop-streaming.jar	file	that	accepts	the	HDFS	paths	for	the	input/output
files	and	the	paths	for	the	files	that	implement	the	map	and	reduce	functionality.

Here	are	some	important	considerations	when	preparing	and	running	a	Hadoop	streaming
job:

	
Although	the	shuffle	and	sort	output	are	provided	to	the	reducer	in	key	sorted	order,
the	reducer	does	not	receive	the	corresponding	values	as	a	list;	rather,	it	receives
individual	key/value	pairs.	The	reduce	code	has	to	monitor	for	changes	in	the	value
of	the	key	and	appropriately	handle	the	new	key.
The	map	and	reduce	code	must	already	be	in	an	executable	form,	or	the	necessary
interpreter	must	already	be	installed	on	each	worker	node.
The	map	and	reduce	code	must	already	reside	on	each	worker	node,	or	the	location	of
the	code	must	be	provided	when	the	job	is	submitted.	In	the	latter	case,	the	code	is
copied	to	each	worker	node.
Some	functionality,	such	as	a	partitioner,	still	needs	to	be	written	in	Java.
The	inputs	and	outputs	are	handled	through	stdin	and	stdout.	Stderr	is	also	available
to	track	the	status	of	the	tasks,	implement	counter	functionality,	and	report	execution
issues	to	the	display	[18].
The	streaming	API	may	not	perform	as	well	as	similar	functionality	written	in	Java.

A	second	alternative	is	to	use	Hadoop	pipes,	a	mechanism	that	uses	compiled	C++	code
for	 the	 map	 and	 reduced	 functionality.	 An	 advantage	 of	 using	 C++	 is	 the	 extensive
numerical	libraries	available	to	include	in	the	code	[19].

To	work	directly	with	data	in	HDFS,	one	option	is	to	use	the	C	API	(libhdfs)	or	the	Java
API	provided	with	Apache	Hadoop.	These	APIs	allow	reads	and	writes	to	HDFS	data	files
outside	 the	 typical	MapReduce	 paradigm	 [20].	 Such	 an	 approach	 may	 be	 useful	 when
attempting	to	debug	a	MapReduce	job	by	examining	the	input	data	or	when	the	objective
is	to	transform	the	HDFS	data	prior	to	running	a	MapReduce	job.

Yet	Another	Resource	Negotiator	(YARN)

Apache	 Hadoop	 continues	 to	 undergo	 further	 development	 and	 frequent	 updates.	 An
important	change	was	to	separate	the	MapReduce	functionality	from	the	functionality	that
manages	 the	 running	 of	 the	 jobs	 and	 the	 associated	 responsibilities	 in	 a	 distributed
environment.	This	rewrite	is	sometimes	called	MapReduce	2.0,	or	Yet	Another	Resource
Negotiator	 (YARN).	YARN	 separates	 the	 resource	management	 of	 the	 cluster	 from	 the
scheduling	 and	 monitoring	 of	 jobs	 running	 on	 the	 cluster.	 The	 YARN	 implementation
makes	 it	 possible	 for	 paradigms	 other	 than	 MapReduce	 to	 be	 utilized	 in	 Hadoop
environments.	For	example,	a	Bulk	Synchronous	Parallel	(BSP)	[21]	model	may	be	more
appropriate	 for	 graph	 processing	 than	 MapReduce	 [22]	 is.	 Apache	 Hama,	 which
implements	 the	BSP	model,	 is	 one	 of	 several	 applications	 being	modified	 to	 utilize	 the
power	of	YARN	[23].

YARN	replaces	the	functionality	previously	provided	by	the	JobTracker	and	TaskTracker
daemons.	In	earlier	releases	of	Hadoop,	a	MapReduce	job	is	submitted	to	the	JobTracker
daemon.	The	JobTracker	communicates	with	 the	NameNode	 to	determine	which	worker
nodes	store	the	required	data	blocks	for	the	MapReduce	job.	The	JobTracker	then	assigns
individual	map	and	reduce	tasks	to	the	TaskTracker	running	on	worker	nodes.	To	optimize
performance,	each	task	is	preferably	assigned	to	a	worker	node	that	is	storing	an	input	data
block.	The	TaskTracker	periodically	communicates	with	the	JobTracker	on	the	status	of	its
executing	 tasks.	 If	a	 task	appears	 to	have	failed,	 the	JobTracker	can	assign	 the	 task	 to	a
different	TaskTracker.

10.2	The	Hadoop	Ecosystem
So	 far,	 this	 chapter	 has	 provided	 an	 overview	 of	 Apache	 Hadoop	 relative	 to	 its
implementation	 of	 HDFS	 and	 the	 MapReduce	 paradigm.	 Hadoop’s	 popularity	 has
spawned	 proprietary	 and	 open	 source	 tools	 to	 make	 Apache	 Hadoop	 easier	 to	 use	 and
provide	 additional	 functionality	 and	 features.	 This	 portion	 of	 the	 chapter	 examines	 the
following	Hadoop-related	Apache	projects:

	
Pig:	Provides	a	high-level	data-flow	programming	language
Hive:	Provides	SQL-like	access
Mahout:	Provides	analytical	tools
HBase:	Provides	real-time	reads	and	writes

By	masking	 the	details	necessary	 to	develop	a	MapReduce	program,	Pig	and	Hive	each
enable	 a	 developer	 to	 write	 high-level	 code	 that	 is	 later	 translated	 into	 one	 or	 more
MapReduce	 programs.	 Because	 MapReduce	 is	 intended	 for	 batch	 processing,	 Pig	 and
Hive	are	also	intended	for	batch	processing	use	cases.

Once	Hadoop	processes	a	dataset,	Mahout	provides	several	tools	that	can	analyze	the	data
in	 a	 Hadoop	 environment.	 For	 example,	 a	 k-means	 clustering	 analysis,	 as	 described	 in
Chapter	4,	can	be	conducted	using	Mahout.

Differentiating	 itself	 from	Pig	and	Hive	batch	processing,	HBase	provides	 the	ability	 to
perform	real-time	reads	and	writes	of	data	stored	in	a	Hadoop	environment.	This	real-time
access	is	accomplished	partly	by	storing	data	in	memory	as	well	as	in	HDFS.	Also,	HBase
does	not	rely	on	MapReduce	to	access	the	HBase	data.	Because	the	design	and	operation
of	HBase	are	significantly	different	from	relational	databases	and	the	other	Hadoop	tools
examined,	a	detailed	description	of	HBase	will	be	presented.

10.2.1	Pig
Apache	Pig	consists	of	a	data	flow	language,	Pig	Latin,	and	an	environment	to	execute	the
Pig	 code.	 The	 main	 benefit	 of	 using	 Pig	 is	 to	 utilize	 the	 power	 of	 MapReduce	 in	 a
distributed	system,	while	simplifying	the	tasks	of	developing	and	executing	a	MapReduce
job.	 In	most	 cases,	 it	 is	 transparent	 to	 the	 user	 that	 a	MapReduce	 job	 is	 running	 in	 the
background	when	Pig	commands	are	executed.	This	abstraction	 layer	on	 top	of	Hadoop
simplifies	 the	 development	 of	 code	 against	 data	 in	HDFS	 and	makes	MapReduce	more
accessible	to	a	larger	audience.

Like	Hadoop,	 Pig’s	 origin	 began	 at	Yahoo!	 in	 2006.	 Pig	was	 transferred	 to	 the	Apache
Software	Foundation	in	2007	and	had	its	first	release	as	an	Apache	Hadoop	subproject	in
2008.	As	Pig	evolves	over	time,	three	main	characteristics	persist:	ease	of	programming,
behind-the-scenes	code	optimization,	and	extensibility	of	capabilities	[24].

With	Apache	Hadoop	and	Pig	already	 installed,	 the	basics	of	using	Pig	 include	entering
the	Pig	execution	environment	by	typing	pig	at	the	command	prompt	and	then	entering	a
sequence	of	Pig	instruction	lines	at	the	grunt	prompt.

An	example	of	Pig-specific	commands	is	shown	here:
$	pig

grunt>	records	=	LOAD	‘/user/customer.txt’	AS

							(cust_id:INT,	first_name:CHARARRAY,

							last_name:CHARARRAY,

							email_address:CHARARRAY);

grunt>	filtered_records	=	FILTER	records

							BY	email_address	matches	‘.*@isp.com’;

grunt>	STORE	filtered_records	INTO	‘/user/isp_customers’;

grunt>	quit

$

At	the	first	grunt	prompt,	a	text	file	is	designated	by	the	Pig	variable	records	with	four
defined	fields:	cust_id,	first_name,	last_name,	and	email_address.	Next,	 the	variable
filtered_records	 is	 assigned	 those	 records	 where	 the	 email_address	 ends	 with
@isp.com	 to	 extract	 the	 customers	 whose	 e-mail	 address	 is	 from	 a	 particular	 Internet
service	provider	 (ISP).	Using	 the	STORE	 command,	 the	 filtered	 records	 are	written	 to	 an
HDFS	folder,	isp_customers.	Finally,	to	exit	the	interactive	Pig	environment,	execute	the
QUIT	command.	Alternatively,	these	individual	Pig	commands	could	be	written	to	the	file
filter_script.pig	and	submit	them	at	the	command	prompt	as	follows:
$	pig	filter_script.pig

Such	Pig	instructions	are	translated,	behind	the	scenes,	into	one	or	more	MapReduce	jobs.
Thus,	 Pig	 simplifies	 the	 coding	 of	 a	 MapReduce	 job	 and	 enables	 the	 user	 to	 quickly
develop,	 test,	 and	 debug	 the	 Pig	 code.	 In	 this	 particular	 example,	 the	MapReduce	 job
would	be	 initiated	after	 the	STORE	 command	 is	 processed.	Prior	 to	 the	STORE	command,
Pig	had	begun	to	build	an	execution	plan	but	had	not	yet	initiated	MapReduce	processing.

Pig	provides	for	the	execution	of	several	common	data	manipulations,	such	as	inner	and
outer	joins	between	two	or	more	files	(tables),	as	would	be	expected	in	a	typical	relational
database.	 Writing	 these	 joins	 explicitly	 in	 MapReduce	 using	 Hadoop	 would	 be	 quite
involved	 and	 complex.	Pig	 also	provides	 a	GROUP	BY	 functionality	 that	 is	 similar	 to	 the
Group	By	 functionality	offered	 in	SQL.	Chapter	11	has	more	details	on	using	Group	By
and	other	SQL	statements.

An	 additional	 feature	 of	 Pig	 is	 that	 it	 provides	 many	 built-in	 functions	 that	 are	 easily
utilized	in	Pig	code.	Table	10.1	includes	several	useful	functions	by	category.

Table	10.1	Built-In	Pig	Functions

Eval Load/Store Math String DateTime
AVG BinStorage() ABS INDEXOF AddDuration

CONCAT JsonLoader CEIL LAST_INDEX_OF CurrentTime

COUNT JsonStorage COS,	ACOS LCFORST DaysBetween

COUNT_STAR PigDump EXP LOWER GetDay

DIFF PigStorage FLOOR REGEX_EXTRACT GetHour

IsEmpty TextLoader LOG,	LOG10 REPLACE GetMinute

MAX HBaseStorage RANDOM STRSPLIT GetMonth

MIN ROUND SUBSTRING GetWeek

http://isp.com

SIZE SIN,	ASIN TRIM GetWeekYear

SUM SQRT UCFIRST GetYear

TOKENIZE TAN,	ATAN UPPER MinutesBetween

SubtractDuration

ToDate

Other	 functions	 and	 the	 details	 of	 these	 built-in	 functions	 can	 be	 found	 at	 the
pig.apache.org	website	[25].

In	terms	of	extensibility,	Pig	allows	the	execution	of	user-defined	functions	(UDFs)	in	its
environment.	 Thus,	 some	 complex	 operations	 can	 be	 coded	 in	 the	 user’s	 language	 of
choice	and	executed	in	 the	Pig	environment.	Users	can	share	 their	UDFs	in	a	repository
called	 the	Piggybank	hosted	on	 the	Apache	 site	 [26].	Over	 time,	 the	most	 useful	UDFs
may	be	included	as	built-in	functions	in	Pig.

10.2.2	Hive
Similar	 to	 Pig,	 Apache	 Hive	 enables	 users	 to	 process	 data	 without	 explicitly	 writing
MapReduce	 code.	 One	 key	 difference	 to	 Pig	 is	 that	 the	 Hive	 language,	 HiveQL	 (Hive
Query	 Language),	 resembles	 Structured	 Query	 Language	 (SQL)	 rather	 than	 a	 scripting
language.

A	Hive	 table	 structure	 consists	 of	 rows	 and	 columns.	 The	 rows	 typically	 correspond	 to
some	record,	transaction,	or	particular	entity	(for	example,	customer)	detail.	The	values	of
the	corresponding	columns	represent	the	various	attributes	or	characteristics	for	each	row.
Hadoop	 and	 its	 ecosystem	 are	 used	 to	 apply	 some	 structure	 to	 unstructured	 data.
Therefore,	 if	 a	 table	 structure	 is	 an	 appropriate	way	 to	 view	 the	 restructured	data,	Hive
may	be	a	good	tool	to	use.

Additionally,	a	user	may	consider	using	Hive	if	the	user	has	experience	with	SQL	and	the
data	 is	already	 in	HDFS.	Another	consideration	 in	using	Hive	may	be	how	data	will	be
updated	or	added	to	the	Hive	tables.	If	data	will	simply	be	added	to	a	table	periodically,
Hive	works	well,	 but	 if	 there	 is	 a	 need	 to	 update	 data	 in	 place,	 it	may	 be	 beneficial	 to
consider	another	tool,	such	as	HBase,	which	will	be	discussed	in	the	next	section.

Although	Hive’s	 performance	may	 be	 better	 in	 certain	 applications	 than	 a	 conventional
SQL	database,	Hive	is	not	intended	for	real-time	querying.	A	Hive	query	is	first	translated
into	a	MapReduce	job,	which	is	then	submitted	to	the	Hadoop	cluster.	Thus,	the	execution
of	the	query	has	to	compete	for	resources	with	any	other	submitted	job.	Like	Pig,	Hive	is
intended	 for	batch	processing.	Again,	HBase	may	be	a	better	choice	 for	 real-time	query
needs.

To	 summarize	 the	 preceding	 discussion,	 consider	 using	 Hive	 when	 the	 following
conditions	exist:

	
Data	easily	fits	into	a	table	structure.
Data	is	already	in	HDFS.	(Note:	Non-HDFS	files	can	be	loaded	into	a	Hive	table.)
Developers	are	comfortable	with	SQL	programming	and	queries.

http://pig.apache.org

There	is	a	desire	to	partition	datasets	based	on	time.	(For	example,	daily	updates	are
added	to	the	Hive	table.)
Batch	processing	is	acceptable.

The	 remainder	 of	 the	Hive	 discussion	 covers	 some	HiveQL	basics.	 From	 the	 command
prompt,	a	user	enters	the	interactive	Hive	environment	by	simply	entering	hive:
$	hive

hive>

From	 this	 environment,	 a	 user	 can	 define	 new	 tables,	 query	 them,	 or	 summarize	 their
contents.	To	illustrate	how	to	use	HiveQL,	the	following	example	defines	a	new	Hive	table
to	hold	customer	data,	load	existing	HDFS	data	into	the	Hive	table,	and	query	the	table.

The	 first	 step	 is	 to	create	a	 table	called	customer	 to	store	customer	details.	Because	 the
table	 will	 be	 populated	 from	 an	 existing	 tab	 (‘\t’)-delimited	 HDFS	 file,	 this	 format	 is
specified	in	the	table	creation	query.
hive>	create	table	customer	(

					cust_id	bigint,

					first_name	string,

					last_name	string,

					email_address	string)

					row	format	delimited

					fields	terminated	by	‘\t’;

The	 following	HiveQL	 query	 is	 executed	 to	 count	 the	 number	 of	 records	 in	 the	 newly
created	table,	customer.	Because	the	table	is	currently	empty,	the	query	returns	a	result	of
zero,	the	last	line	of	the	provided	output.	The	query	is	converted	and	run	as	a	MapReduce
job,	which	results	in	one	map	task	and	one	reduce	task	being	executed.
hive>	select	count(*)	from	customer;

Total	MapReduce	jobs	=	1

Launching	Job	1	out	of	1

Number	of	reduce	tasks	determined	at	compile	time:	1

Starting	Job	=	job_1394125045435_0001,	Tracking	URL	=

		http://pivhdsne:8088/proxy/application_1394125045435_0001/

Kill	Command	=	/usr/lib/gphd/hadoop/bin/hadoop	job

		-kill	job_1394125045435_0001

Hadoop	job	information	for	Stage-1:	number	of	mappers:	1;

		number	of	reducers:	1

2014-03-06	12:30:23,542	Stage-1	map	=	0%,	reduce	=	0%

2014-03-06	12:30:36,586	Stage-1	map	=	100%,	reduce	=	0%,

		Cumulative	CPU	1.71	sec

2014-03-06	12:30:48,500	Stage-1	map	=	100%,	reduce	=	100%,

		Cumulative	CPU	3.76	sec

MapReduce	Total	cumulative	CPU	time:	3	seconds	760	msec

Ended	Job	=	job_1394125045435_0001

MapReduce	Jobs	Launched:

Job	0:	Map:	1	Reduce:	1	Cumulative	CPU:	3.76	sec	HDFS	Read:	242

		HDFS	Write:	2	SUCCESS

Total	MapReduce	CPU	Time	Spent:	3	seconds	760	msec

OK

0

When	querying	 large	 tables,	Hive	outperforms	and	 scales	better	 than	most	 conventional
database	queries.	As	stated	earlier,	Hive	translates	HiveQL	queries	into	MapReduce	jobs
that	process	pieces	of	large	datasets	in	parallel.

To	 load	 the	 customer	 table	 with	 the	 contents	 of	 HDFS	 file,	 customer.txt,	 it	 is	 only
necessary	to	provide	the	HDFS	directory	path	to	the	file.
hive>	load	data	inpath	‘/user/customer.txt’	into	table	customer;

The	following	query	displays	three	rows	from	the	customer	table.
hive>	select	*	from	customer	limit	3;

34567678		Mary	Jones		mary.jones@isp.com

897572388	Harry	Schmidt		harry.schmidt@isp.com

89976576		Tom	Smith		thomas.smith@another_isp.com

It	is	often	necessary	to	join	one	or	more	Hive	tables	based	on	one	or	more	columns.	The
following	example	provides	the	mechanism	to	join	the	customer	table	with	another	table,
orders,	which	 stores	 the	 details	 about	 the	 customer’s	 orders.	 Instead	 of	 placing	 all	 the
customer	details	in	the	order	table,	only	the	corresponding	cust_id	appears	in	the	orders
table.
hive>	select	o.order_number,	o.order_date,	c.*

				from	orders	o	inner	join	customer	c

				on	o.cust_id	=	c.cust_id

				where	c.email_address	=	‘mary.jones@isp.com’;

Total	MapReduce	jobs	=	1

Launching	Job	1	out	of	1

Number	of	reduce	tasks	not	specified.	Estimated	from	input	data	size:	1

Starting	Job	=	job_1394125045435_0002,	Tracking	URL	=

		http://pivhdsne:8088/proxy/application_1394125045435_0002/

Kill	Command	=	/usr/lib/gphd/hadoop/bin/hadoop	job

		-kill	job_1394125045435_0002

Hadoop	job	information	for	Stage-1:	number	of	mappers:	2;

		number	of	reducers:	1

2014-03-06	13:26:20,277	Stage-1	map	=	0%,	reduce	=	0%

2014-03-06	13:26:42,568	Stage-1	map	=	50%,	reduce	=	0%,

		Cumulative	CPU	4.23	sec

2014-03-06	13:26:43,637	Stage-1	map	=	100%,reduce	=	0%,

		Cumulative	CPU	4.79	sec

2014-03-06	13:26:52,658	Stage-1	map	=	100%,reduce	=	100%,

		Cumulative	CPU	7.07	sec

MapReduce	Total	cumulative	CPU	time:	7	seconds	70	msec

Ended	Job	=	job_1394125045435_0002

MapReduce	Jobs	Launched:

Job	0:	Map:	2	Reduce:	1	Cumulative	CPU:	7.07	sec	HDFS	Read:	602

		HDFS	Write:	140	SUCCESS

Total	MapReduce	CPU	Time	Spent:	7	seconds	70	msec

OK

X234825811	2013-11-15	17:08:43	34567678	Mary	Jones	mary.jones@isp.com

X234823904	2013-11-04	12:53:19	34567678	Mary	Jones	mary.jones@isp.com

The	 use	 of	 joins	 and	 SQL	 in	 general	 will	 be	 covered	 in	 Chapter	 11.	 To	 exit	 the	 Hive
interactive	environment,	use	quit.
hive>	quit;

$

An	 alternative	 to	 running	 in	 the	 interactive	 environment	 is	 to	 collect	 the	 HiveQL
statements	in	a	script	(for	example,	my_script.sql)	and	then	execute	the	file	as	follows:
$	hive	-f	my_script.sql

This	introduction	to	Hive	provided	some	of	the	basic	HiveQL	commands	and	statements.
The	 reader	 is	 encouraged	 to	 research	 and	 utilize,	 when	 appropriate,	 other	 Hive
functionality	 such	 as	 external	 tables,	 explain	 plans,	 partitions,	 and	 the	 INSERT	 INTO

command	to	append	data	to	the	existing	content	of	a	Hive	table.

Following	are	some	Hive	use	cases:

	
Exploratory	or	ad-hoc	analysis	of	HDFS	data:	Data	can	be	queried,	transformed,
and	exported	to	analytical	tools,	such	as	R.
Extracts	or	data	feeds	to	reporting	systems,	dashboards,	or	data	repositories
such	as	HBase:	Hive	queries	can	be	scheduled	to	provide	such	periodic	feeds.
Combining	external	structured	data	to	data	already	residing	in	HDFS:	Hadoop
is	excellent	for	processing	unstructured	data,	but	often	there	is	structured	data
residing	in	an	RDBMS,	such	as	Oracle	or	SQL	Server,	that	needs	to	be	joined	with
the	data	residing	in	HDFS.	The	data	from	an	RDBMS	can	be	periodically	added	to
Hive	tables	for	querying	with	existing	data	in	HDFS.

10.2.3	HBase
Unlike	Pig	and	Hive,	which	are	intended	for	batch	applications,	Apache	HBase	is	capable
of	providing	real-time	read	and	write	access	to	datasets	with	billions	of	rows	and	millions
of	 columns.	 To	 illustrate	 the	 differences	 between	HBase	 and	 a	 relational	 database,	 this
section	presents	considerable	details	about	the	implementation	and	use	of	HBase.

The	HBase	 design	 is	 based	 on	Google’s	 2006	 paper	 on	Bigtable.	 This	 paper	 described
Bigtable	 as	 a	 “distributed	 storage	 system	 for	 managing	 structured	 data.”	 Google	 used
Bigtable	 to	 store	 Google	 product–specific	 data	 for	 sites	 such	 as	 Google	 Earth,	 which
provides	satellite	images	of	the	world.	Bigtable	was	also	used	to	store	web	crawler	results,
data	for	personalized	search	optimization,	and	website	clickstream	data.	Bigtable	was	built
on	top	of	the	Google	File	System.	MapReduce	was	also	utilized	to	process	data	into	or	out
of	a	Bigtable.	For	example,	the	raw	clickstream	data	was	stored	in	a	Bigtable.	Periodically,
a	 scheduled	 MapReduce	 job	 would	 run	 that	 would	 process	 and	 summarize	 the	 newly
added	clickstream	data	and	append	the	results	to	a	second	Bigtable	[27].

The	 development	 of	 HBase	 began	 in	 2006.	 HBase	 was	 included	 as	 part	 of	 a	 Hadoop
distribution	 at	 the	 end	 of	 2007.	 In	 May	 2010,	 HBase	 became	 an	 Apache	 Top	 Level
Project.	Later	in	2010,	Facebook	began	to	use	HBase	for	its	user	messaging	infrastructure,
which	accommodated	350	million	users	sending	15	billion	messages	per	month	[28].

HBase	Architecture	and	Data	Model

HBase	 is	 a	 data	 store	 that	 is	 intended	 to	 be	 distributed	 across	 a	 cluster	 of	 nodes.	 Like
Hadoop	and	many	of	its	related	Apache	projects,	HBase	is	built	upon	HDFS	and	achieves

its	 real-time	 access	 speeds	 by	 sharing	 the	workload	 over	 a	 large	 number	 of	 nodes	 in	 a
distributed	 cluster.	 An	HBase	 table	 consists	 of	 rows	 and	 columns.	 However,	 an	HBase
table	 also	 has	 a	 third	 dimension,	 version,	 to	maintain	 the	 different	 values	 of	 a	 row	 and
column	intersection	over	time.

To	 illustrate	 this	 third	 dimension,	 a	 simple	 example	would	 be	 that	 for	 any	given	online
customer,	several	shipping	addresses	could	be	stored.	So,	the	row	would	be	indicated	by	a
customer	 number.	 One	 column	 would	 provide	 the	 shipping	 address.	 The	 value	 of	 the
shipping	 address	 would	 be	 added	 at	 the	 intersection	 of	 the	 customer	 number	 and	 the
shipping	address	column,	along	with	a	timestamp	corresponding	to	when	the	customer	last
used	this	shipping	address.

During	a	customer’s	checkout	process	from	an	online	retailer,	a	website	might	use	such	a
table	 to	 retrieve	 and	 display	 the	 customer’s	 previous	 shipping	 addresses.	 As	 shown	 in
Figure	10.6,	 the	customer	can	 then	select	 the	appropriate	address,	add	a	new	address,	or
delete	any	addresses	that	are	no	longer	relevant.

Figure	10.6	Choosing	a	shipping	address	at	checkout

Of	course,	in	addition	to	a	customer’s	shipping	address,	other	customer	information,	such
as	billing	address,	preferences,	billing	credits/debits,	and	customer	benefits	(for	example,
free	 shipping)	must	 be	 stored.	 For	 this	 type	 of	 application,	 real-time	 access	 is	 required.
Thus,	 the	 use	 of	 the	 batch	 processing	 of	 Pig,	 Hive,	 or	 Hadoop’s	 MapReduce	 is	 not	 a
reasonable	 implementation	 approach.	 The	 following	 discussion	 examines	 how	 HBase
stores	the	data	and	provides	real-time	read	and	write	access.

As	mentioned,	HBase	is	built	on	top	of	HDFS.	HBase	uses	a	key/value	structure	to	store
the	contents	of	an	HBase	table.	Each	value	is	the	data	to	be	stored	at	the	intersection	of	the
row,	column,	and	version.	Each	key	consists	of	the	following	elements	[29]:

	
Row	length
Row	(sometimes	called	the	row	key)
Column	family	length

Column	family
Column	qualifier
Version
Key	type

The	row	is	used	as	the	primary	attribute	to	access	the	contents	of	an	HBase	table.	The	row
is	 the	 basis	 for	 how	 the	 data	 is	 distributed	 across	 the	 cluster	 and	 allows	 a	 query	 of	 an
HBase	table	to	quickly	retrieve	the	desired	elements.	Thus,	the	structure	or	layout	of	the
row	has	to	be	specifically	designed	based	on	how	the	data	will	be	accessed.	In	this	respect,
an	 HBase	 table	 is	 purpose	 built	 and	 is	 not	 intended	 for	 general	 ad-hoc	 querying	 and
analysis.	 In	other	words,	 it	 is	 important	 to	know	how	the	HBase	 table	will	be	used;	 this
understanding	of	 the	 table’s	usage	helps	 to	optimally	define	 the	construction	of	 the	 row
and	the	table.

For	 example,	 if	 an	 HBase	 table	 is	 to	 store	 the	 content	 of	 e-mails,	 the	 row	 may	 be
constructed	 as	 the	 concatenation	 of	 an	 e-mail	 address	 and	 the	 date	 sent.	 Because	 the
HBase	table	will	be	stored	based	on	the	row,	the	retrieval	of	the	e-mails	by	a	given	e-mail
address	will	be	fairly	efficient,	but	the	retrieval	of	all	e-mails	in	a	certain	date	range	will
take	much	 longer.	The	 later	discussion	on	 regions	provides	more	details	on	how	data	 is
stored	in	HBase.

A	column	in	an	HBase	table	is	designated	by	the	combination	of	the	column	family	and
the	column	qualifier.	The	column	family	provides	a	high-level	grouping	for	 the	column
qualifiers.	 In	 the	 earlier	 shipping	 address	 example,	 the	 row	 could	 contain	 the
order_number,	 and	 the	 order	 details	 could	 be	 stored	 under	 the	 column	 family	 orders,
using	the	column	qualifiers	such	as	shipping_address,	billing_address,	order_date.	In
HBase,	 a	 column	 is	 specified	 as	 column	 family:column	 qualifier.	 In	 the	 example,	 the
column	orders:shipping_address	refers	to	an	order’s	shipping	address.

A	cell	is	the	intersection	of	a	row	and	a	column	in	a	table.	The	version,	sometimes	called
the	 timestamp,	 provides	 the	 ability	 to	maintain	 different	 values	 for	 a	 cell’s	 contents	 in
HBase.	Although	the	user	can	define	a	custom	value	for	the	version	when	writing	an	entry
to	 the	 table,	 a	 typical	 HBase	 implementation	 uses	 HBase’s	 default,	 the	 current	 system
time.	 In	 Java,	 this	 timestamp	 is	 obtained	 with	 System	 .getCurrentTimeMillis(),	 the
number	 of	 milliseconds	 since	 January	 1,	 1970.	 Because	 it	 is	 likely	 that	 only	 the	 most
recent	version	of	a	cell	may	be	 required,	 the	cells	 are	 stored	 in	descending	order	of	 the
version.	If	the	application	requires	the	cells	to	be	stored	and	retrieved	in	ascending	order
of	 their	 creation	 time,	 the	 approach	 is	 to	 use	 Long.MAX_VALUE	 -

System.getCurrentTimeMillis()	 in	 Java	 as	 the	 version	 number.	 Long.MAX_VALUE
corresponds	 to	 the	maximum	value	 that	 a	 long	 integer	 can	 be	 in	 Java.	 In	 this	 case,	 the
storing	and	sorting	is	still	in	descending	order	of	the	version	values.

Key	type	 is	used	 to	 identify	whether	a	particular	key	corresponds	 to	a	write	operation	 to
the	HBase	table	or	a	delete	operation	from	the	table.	Technically,	a	delete	from	an	HBase
table	is	accomplished	with	a	write	to	the	table.	The	key	type	indicates	the	purpose	of	the
write.	 For	 deletes,	 a	 tombstone	 marker	 is	 written	 to	 the	 table	 to	 indicate	 that	 all	 cell
versions	 equal	 to	 or	 older	 than	 the	 specified	 timestamp	 should	 be	 deleted	 for	 the

corresponding	row	and	column	family:column	qualifier.

Once	an	HBase	environment	is	installed,	the	user	can	enter	the	HBase	shell	environment
by	entering	hbase	shell	at	the	command	prompt.	An	HBase	table,	my_table,	can	then	be
created	as	follows:
$	hbase	shell

hbase>	create	‘my_table’,	‘cf1’,	‘cf2’,

				{SPLITS	=>[‘250000’,‘500000’,‘750000’]}

Two	column	families,	cf1	and	cf2,	are	defined	in	the	table.	The	SPLITS	option	specifies
how	 the	 table	will	be	divided	based	on	 the	 row	portion	of	 the	key.	 In	 this	 example,	 the
table	is	split	into	four	parts,	called	regions.	Rows	less	than	250000	are	added	to	the	first
region;	rows	from	250000	to	less	than	500000	are	added	to	the	second	region,	and	likewise
for	 the	 remaining	 splits.	 These	 splits	 provide	 the	 primary	mechanism	 for	 achieving	 the
real-time	read	and	write	access.	In	this	example,	my_table	is	split	into	four	regions,	each
on	its	own	worker	node	in	the	Hadoop	cluster.	Thus,	as	the	table	size	increases	or	the	user
load	increases,	additional	worker	nodes	and	region	splits	can	be	added	to	scale	the	cluster
appropriately.	 The	 reads	 and	 writes	 are	 based	 on	 the	 contents	 of	 the	 row.	 HBase	 can
quickly	determine	the	appropriate	region	to	direct	a	read	or	write	command.	More	about
regions	and	their	implementation	will	be	discussed	later.

Only	 column	 families,	 not	 column	 qualifiers,	 need	 to	 be	 defined	 during	 HBase	 table
creation.	New	 column	 qualifiers	 can	 be	 defined	whenever	 data	 is	written	 to	 the	HBase
table.	Unlike	most	relational	databases,	in	which	a	database	administrator	needs	to	add	a
column	 and	 define	 the	 data	 type,	 columns	 can	 be	 added	 to	 an	HBase	 table	 as	 the	 need
arises.	Such	 flexibility	 is	 one	of	 the	 strengths	of	HBase	 and	 is	 certainly	desirable	when
dealing	with	unstructured	data.	Over	time,	the	unstructured	data	will	likely	change.	Thus,
the	new	content	with	new	column	qualifiers	must	 be	 extracted	 and	 added	 to	 the	HBase
table.

Column	families	help	to	define	how	the	table	will	be	physically	stored.	An	HBase	table	is
split	into	regions,	but	each	region	is	split	into	column	families	that	are	stored	separately	in
HDFS.	From	the	Linux	command	prompt,	running	hadoop	fs	-ls	-R	/hbase	shows	how
the	HBase	table,	my_table,	is	stored	in	HBase.
$	hadoop	fs	-ls	-R	/hbase

0	2014-02-28	16:40	/hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4

243	2014-02-28	16:40	/hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

						.regioninfo

0	2014-02-28	16:40	/hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

						cf1

0	2014-02-28	16:40	/hbase/my_table/028ed22e02ad07d2d73344cd53a11fb4/

						cf2

0	2014-02-28	16:40	/hbase/my_table/2327b09784889e6198909d8b8f342289

255	2014-02-28	16:40	/hbase/my_table/2327b09784889e6198909d8b8f342289/

						.regioninfo

0	2014-02-28	16:40	/hbase/my_table/2327b09784889e6198909d8b8f342289/

						cf1

0	2014-02-28	16:40	/hbase/my_table/2327b09784889e6198909d8b8f342289/

						cf2

0	2014-02-28	16:40	/hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd

267	2014-02-28	16:40	/hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

						.regioninfo

0	2014-02-28	16:40	/hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

						cf1

0	2014-02-28	16:40	/hbase/my_table/4b4fc9ad951297efe2b9b38640f7a5fd/

						cf2

0	2014-02-28	16:40	/hbase/my_table/e40be0371f43135e36ea67edec6e31e3

267	2014-02-28	16:40	/hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

						.regioninfo

0	2014-02-28	16:40	/hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

						cf1

0	2014-02-28	16:40	/hbase/my_table/e40be0371f43135e36ea67edec6e31e3/

						cf2

As	 can	 be	 seen,	 four	 subdirectories	 have	 been	 created	 under	 /hbase/mytable.	 Each
subdirectory	is	named	by	taking	the	hash	of	its	respective	region	name,	which	includes	the
start	 and	 end	 rows.	 Under	 each	 of	 these	 directories	 are	 the	 directories	 for	 the	 column
families,	cf1	and	cf2	 in	 the	example,	 and	 the	.regioninfo	 file,	which	 contains	 several
options	 and	 attributes	 for	 how	 the	 regions	 will	 be	 maintained.	 The	 column	 family
directories	 store	 keys	 and	 values	 for	 the	 corresponding	 column	 qualifiers.	 The	 column
qualifiers	from	one	column	family	should	seldom	be	read	with	the	column	qualifiers	from
another	 column	 family.	 The	 reason	 for	 the	 separate	 column	 families	 is	 to	minimize	 the
amount	 of	 unnecessary	 data	 that	 HBase	 has	 to	 sift	 through	within	 a	 region	 to	 find	 the
requested	data.	Requesting	data	from	two	column	families	means	that	multiple	directories
have	to	be	scanned	to	pull	all	the	desired	columns,	which	defeats	the	purpose	of	creating
the	column	families	in	the	first	place.	In	such	cases,	the	table	design	may	be	better	off	with
just	 one	 column	 family.	 In	 practice,	 the	 number	 of	 column	 families	 should	 be	 no	more
than	two	or	three.	Otherwise,	performance	issues	may	arise	[30].

The	following	operations	add	data	to	the	table	using	the	put	command.	From	these	three
put	 operations,	 data1	 and	 data2	 are	 entered	 into	 column	 qualifiers,	 cq1	 and	 cq2,
respectively,	in	column	family	cf1.	The	value	data3	is	entered	into	column	qualifier	cq3
in	column	family	cf2.	The	row	is	designated	by	row	key	000700	in	each	operation.
hbase>	put	‘my_table’,	‘000700’,	‘cf1:cq1’,	‘data1’

0	row(s)	in	0.0030	seconds

hbase>	put	‘my_table’,	‘000700’,	‘cf1:cq2’,	‘data2’

0	row(s)	in	0.0030	seconds

hbase>	put	‘my_table’,	‘000700’,	‘cf2:cq3’,	‘data3’

0	row(s)	in	0.0040	seconds

Data	 can	 be	 retrieved	 from	 the	HBase	 table	 by	 using	 the	get	 command.	As	mentioned
earlier,	the	timestamp	defaults	to	the	milliseconds	since	January	1,	1970.
hbase>	get	‘my_table’,	‘000700’,	‘cf2:cq3’

COLUMN		CELL

cf2:cq3	timestamp=1393866138714,	value=data3

1	row(s)	in	0.0350	seconds

By	default,	the	get	command	returns	the	most	recent	version.	To	illustrate,	after	executing

a	second	put	operation	in	the	same	row	and	column,	a	subsequent	get	provides	the	most
recently	added	value	of	data4.
hbase>	put	‘my_table’,	‘000700’,	‘cf2:cq3’,	‘data4’

0	row(s)	in	0.0040	seconds

hbase>	get	‘my_table’,	‘000700’,	‘cf2:cq3’

COLUMN		CELL

cf2:cq3	timestamp=1393866431669,	value=data4

1	row(s)	in	0.0080	seconds

The	get	operation	can	provide	multiple	versions	by	specifying	the	number	of	versions	to
retrieve.	This	example	illustrates	that	the	cells	are	presented	in	descending	version	order.
hbase>	get	‘my_table’,	‘000700’,	{COLUMN	=>	‘cf2:cq3’,	VERSIONS	=>	2}

COLUMN		CELL

cf2:cq3	timestamp=1393866431669,	value=data4

cf2:cq3	timestamp=1393866138714,	value=data3

2	row(s)	in	1.0200	seconds

A	similar	operation	to	the	get	command	is	scan.	A	scan	retrieves	all	the	rows	between	a
specified	STARTROW	and	a	STOPROW,	but	excluding	the	STOPROW.	Note:	 if	 the	STOPROW	was
set	to	000700,	only	row	000600	would	have	been	returned.
hbase>	scan	‘my_table’,	{STARTROW	=>	‘000600’,	STOPROW	=>‘000800’}

ROW			COLUMN+CELL

000600		column=cf1:cq2,	timestamp=1393866792008,	value=data5

000700		column=cf1:cq1,	timestamp=1393866105687,	value=data1

000700		column=cf1:cq2,	timestamp=1393866122073,	value=data2

000700		column=cf2:cq3,	timestamp=1393866431669,	value=data4

2	row(s)	in	0.0400	seconds

The	 next	 operation	 deletes	 the	 oldest	 entry	 for	 column	 cf2:cq3	 for	 row	 000700	 by
specifying	the	timestamp.
hbase>	delete	‘my_table’,	‘000700’,	‘cf2:cq3’,	1393866138714

0	row(s)	in	0.0110	seconds

Repeating	the	earlier	get	operation	to	obtain	both	versions	only	provides	the	last	version
for	that	cell.	After	all,	the	older	version	was	deleted.
hbase>	get	‘my_table’,	‘000700’,	{COLUMN	=>	‘cf2:cq3’,	VERSIONS	=>	2}

COLUMN		CELL

cf2:cq3	timestamp=1393866431669,	value=data4

1	row(s)	in	0.0130	seconds

However,	 running	 a	scan	 operation,	with	 the	RAW	option	 set	 to	 true,	 reveals	 that	 the
deleted	entry	actually	remains.	The	highlighted	line	illustrates	the	creation	of	a	tombstone
marker,	which	informs	the	default	get	and	scan	operations	to	ignore	all	older	cell	versions
of	the	particular	row	and	column.
hbase>	scan	‘my_table’,	{RAW	=>	true,	VERSIONS	=>	2,

			STARTROW	=>	‘000700’}

ROW			COLUMN+CELL

000700		column=cf1:cq1,	timestamp=1393866105687,	value=data1

000700		column=cf1:cq2,	timestamp=1393866122073,	value=data2

000700		column=cf2:cq3,	timestamp=1393866431669,	value=data4

000700							column=cf2:cq3,	timestamp=1393866138714,	type=DeleteColumn

000700		column=cf2:cq3,	timestamp=1393866138714,	value=data3

1	row(s)	in	0.0370	seconds

When	will	 the	deleted	entries	be	permanently	removed?	To	understand	this	process,	 it	 is
necessary	to	understand	how	HBase	processes	operations	and	achieves	the	real-time	read
and	write	access.	As	mentioned	earlier,	an	HBase	table	is	split	 into	regions	based	on	the
row.	 Each	 region	 is	 maintained	 by	 a	 worker	 node.	 During	 a	 put	 or	 delete	 operation
against	 a	particular	 region,	 the	worker	node	 first	writes	 the	 command	 to	 a	Write	Ahead
Log	 (WAL)	 file	 for	 the	 region.	 The	WAL	 ensures	 that	 the	 operations	 are	 not	 lost	 if	 a
system	fails.	Next,	the	results	of	the	operation	are	stored	within	the	worker	node’s	RAM	in
a	repository	called	MemStore	[31].

Writing	the	entry	to	the	MemStore	provides	the	real-time	access	required.	Any	client	can
access	the	entries	in	the	MemStore	as	soon	as	they	are	written.	As	the	MemStore	increases
in	size	or	at	predetermined	time	intervals,	the	sorted	MemStore	is	then	written	(flushed)	to
a	 file,	 known	 as	 an	 HFile,	 in	 HDFS	 on	 the	 same	 worker	 node.	 A	 typical	 HBase
implementation	flushes	the	MemStore	when	its	contents	are	slightly	 less	 than	the	HDFS
block	 size.	 Over	 time,	 these	 flushed	 files	 accumulate,	 and	 the	worker	 node	 performs	 a
minor	compaction	that	performs	a	sorted	merge	of	the	various	flushed	files.

Meanwhile,	 any	 get	 or	 scan	 requests	 that	 the	 worker	 node	 receives	 examine	 these
possible	storage	locations:

	
MemStore
HFiles	resulting	from	MemStore	flushes
HFiles	from	minor	compactions

Thus,	in	the	case	of	a	delete	operation	followed	relatively	quickly	by	a	get	operation	on
the	 same	 row,	 the	 tombstone	 marker	 is	 found	 in	 the	MemStore	 and	 the	 corresponding
previous	versions	in	the	smaller	HFiles	or	previously	merged	HFiles.	The	get	command	is
instantaneously	processed	and	the	appropriate	data	returned	to	the	client.

Over	 time,	as	 the	smaller	HFiles	accumulate,	 the	worker	node	runs	a	major	compaction
that	merges	 the	 smaller	HFiles	 into	 one	 large	HFile.	During	 the	major	 compaction,	 the
deleted	entries	and	the	tombstone	markers	are	permanently	removed	from	the	files.

Use	Cases	for	HBase

As	 described	 in	 Google’s	 Bigtable	 paper,	 a	 common	 use	 case	 for	 a	 data	 store	 such	 as
HBase	 is	 to	 store	 the	 results	 from	 a	web	 crawler.	 Using	 this	 paper’s	 example,	 the	 row
com.cnn.www,	 for	 example,	 corresponds	 to	 a	 website	 URL,	 www.cnn.com.	 A	 column
family,	 called	anchor,	 is	 defined	 to	 capture	 the	website	URLs	 that	 provide	 links	 to	 the
row’s	 website.	 What	 may	 not	 be	 an	 obvious	 implementation	 is	 that	 those	 anchoring
website	 URLs	 are	 used	 as	 the	 column	 qualifiers.	 For	 example,	 if	 sportsillustrated.
cnn.com	provides	a	link	to	www.cnn.com,	the	column	qualifier	is	sportsillustrated.cnn

http://www.com.cnn.www
http://www.cnn.com
http://cnn.com
http://www.cnn.com
http://sportsillustrated.cnn.com

.com.	Additional	websites	that	provide	links	to	www.cnn.com	appear	as	additional	column
qualifiers.	The	value	stored	in	the	cell	is	simply	the	text	on	the	website	that	provides	the
link.	Here	is	how	the	CNN	example	may	look	in	HBase	following	a	get	operation.
hbase>	get	‘web_table’,	‘com.cnn.www’,	{VERSIONS	=>	2}

COLUMN								CELL

anchor:sportsillustrated.cnn.com	timestamp=1380224620597,	value=cnn

anchor:sportsillustrated.cnn.com	timestamp=1380224000001,	value=cnn.com

anchor:edition.cnn.com				timestamp=1380224620597,	value=cnn

Additional	 results	 are	 returned	 for	 each	 corresponding	 website	 that	 provides	 a	 link	 to
www.cnn.com.	 Finally,	 an	 explanation	 is	 required	 for	 using	 com.cnn.www	 for	 the	 row
instead	of	www.cnn.com.	By	reversing	the	URLs,	the	various	suffixes	(.com,	.gov,	or	.net)
that	correspond	to	the	Internet’s	top-level	domains	are	stored	in	order.	Also,	the	next	part
of	 the	 domain	 name	 (cnn)	 is	 stored	 in	 order.	 So,	 all	 of	 the	 cnn.com	 websites	 could	 be
retrieved	by	a	scan	with	the	STARTROW	of	com.cnn	and	the	appropriate	STOPROW.

This	 simple	 use	 case	 illustrates	 several	 important	 points.	 First,	 it	 is	 possible	 to	 get	 to	 a
billion	rows	and	millions	of	columns	in	an	HBase	table.	As	of	February	2014,	more	than
920	million	websites	have	been	identified	[32].	Second,	the	row	needs	to	be	defined	based
on	how	 the	data	will	be	accessed.	An	HBase	 table	needs	 to	be	designed	with	a	 specific
purpose	in	mind	and	a	well-reasoned	plan	for	how	data	will	be	read	and	written.	Finally,	it
may	be	 advantageous	 to	 use	 the	 column	qualifiers	 to	 actually	 store	 the	 data	 of	 interest,
rather	 than	 simply	 storing	 it	 in	 a	 cell.	 In	 the	 example,	 as	 new	 hosting	 websites	 are
established,	they	become	new	column	qualifiers.

A	 second	 use	 case	 is	 the	 storage	 and	 search	 access	 of	 messages.	 In	 2010,	 Facebook
implemented	 such	a	 system	using	HBase.	At	 the	 time,	Facebook’s	 system	was	handling
more	than	15	billion	user-to-user	messages	per	month	and	120	billion	chat	messages	per
month	[33].	The	following	describes	Facebook’s	approach	to	building	a	search	index	for
user	 inboxes.	Using	each	word	 in	each	user’s	message,	an	HBase	 table	was	designed	as
follows:

	
The	row	was	defined	to	be	the	user	ID.
The	column	qualifier	was	set	to	a	word	that	appears	in	the	message.
The	version	was	the	message	ID.
The	cell’s	content	was	the	offset	of	the	word	in	the	message.

This	implementation	allowed	Facebook	to	provide	auto-complete	capability	in	the	search
box	and	to	return	the	results	of	the	query	quickly,	with	the	most	recent	messages	at	the	top.
As	long	as	the	message	IDs	increase	over	time,	the	versions,	stored	in	descending	order,
ensure	that	the	most	recent	e-mails	are	returned	first	to	the	user	[34].

These	two	use	cases	help	illustrate	the	importance	of	the	upfront	design	of	the	HBase	table
based	on	how	the	data	will	be	accessed.	Also,	these	examples	illustrate	the	power	of	being
able	 to	 add	 new	 columns	 by	 adding	 new	 column	 qualifiers,	 on	 demand.	 In	 a	 typical
RDBMS	 implementation,	 new	 columns	 require	 the	 involvement	 of	 a	 DBA	 to	 alter	 the

http://www.cnn.com
http://www.cnn.com
http://com.cnn.www
http://www.cnn.com
http://cnn.com
http://com.cnn

structure	of	the	table.

Other	HBase	Usage	Considerations

In	 addition	 to	 the	 HBase	 design	 aspects	 presented	 in	 the	 use	 case	 discussions,	 the
following	considerations	are	important	for	a	successful	implementation.

	
Java	API:	Previously,	several	HBase	shell	commands	and	operations	were
presented.	The	shell	commands	are	useful	for	exploring	the	data	in	an	HBase
environment	and	illustrating	their	use.	However,	in	a	production	environment,	the
HBase	Java	API	could	be	used	to	program	the	desired	operations	and	the	conditions
in	which	to	execute	the	operations.
Column	family	and	column	qualifier	names:	It	is	important	to	keep	the	name
lengths	of	the	column	families	and	column	qualifiers	as	short	as	possible.	Although
short	names	tend	to	go	against	conventional	wisdom	about	using	meaningful,
descriptive	names,	the	names	of	column	family	name	and	the	column	qualifier	are
stored	as	part	of	the	key	of	each	key/value	pair.	Thus,	every	additional	byte	added	to
a	name	over	each	row	can	quickly	add	up.	Also,	by	default,	three	copies	of	each
HDFS	block	are	replicated	across	the	Hadoop	cluster,	which	triples	the	storage
requirement.
Defining	rows:	The	definition	of	the	row	is	one	of	the	most	important	aspects	of	the
HBase	table	design.	In	general,	this	is	the	main	mechanism	to	perform	read/write
operations	on	an	HBase	table.	The	row	needs	to	be	constructed	in	such	a	way	that	the
requested	columns	can	be	easily	and	quickly	retrieved.
Avoid	creating	sequential	rows:	A	natural	tendency	is	to	create	rows	sequentially.
For	example,	if	the	row	key	is	to	have	the	customer	identification	number,	and	the
customer	identification	numbers	are	created	sequentially,	HBase	may	run	into	a
situation	in	which	all	the	new	users	and	their	data	are	being	written	to	just	one	region,
which	is	not	distributing	the	workload	across	the	cluster	as	intended	[35].	An
approach	to	resolve	such	a	problem	is	to	randomly	assign	a	prefix	to	the	sequential
number.
Versioning	control:	HBase	table	options	that	can	be	defined	during	table	creation	or
altered	later	control	how	long	a	version	of	a	cell’s	contents	will	exist.	There	are
options	for	TimeToLive	(TTL)	after	which	any	older	versions	will	be	deleted.	Also,
there	are	options	for	the	minimum	and	maximum	number	of	versions	to	maintain.
Zookeeper:	HBase	uses	Apache	Zookeeper	to	coordinate	and	manage	the	various
regions	running	on	the	distributed	cluster.	In	general,	Zookeeper	is	“a	centralized
service	for	maintaining	configuration	information,	naming,	providing	distributed
synchronization,	and	providing	group	services.	All	of	these	kinds	of	services	are	used
in	some	form	or	another	by	distributed	applications.”	[36]	Instead	of	building	its	own
coordination	service,	HBase	uses	Zookeeper.	Relative	to	HBase,	there	are	some
Zookeeper	configuration	considerations	[37].

10.2.4	Mahout

The	 majority	 of	 this	 chapter	 has	 focused	 on	 processing,	 structuring,	 and	 storing	 large
datasets	 using	 Apache	 Hadoop	 and	 various	 parts	 of	 its	 ecosystem.	 After	 a	 dataset	 is
available	 in	HDFS,	 the	 next	 step	may	 be	 to	 apply	 an	 analytical	 technique	 presented	 in
Chapters	4	 through	9.	Tools	such	as	R	are	useful	for	analyzing	relatively	small	datasets,
but	they	may	suffer	from	performance	issues	with	the	large	datasets	stored	in	Hadoop.	To
apply	 the	 analytical	 techniques	 within	 the	 Hadoop	 environment,	 an	 option	 is	 to	 use
Apache	 Mahout.	 This	 Apache	 project	 provides	 executable	 Java	 libraries	 to	 apply
analytical	 techniques	 in	a	scalable	manner	 to	Big	Data.	 In	general,	a	mahout	 is	a	person
who	controls	an	elephant.	Apache	Mahout	is	the	toolset	that	directs	Hadoop,	the	elephant
in	this	case,	to	yield	meaningful	analytic	results.

Mahout	provides	Java	code	 that	 implements	 the	algorithms	for	several	 techniques	 in	 the
following	three	categories	[38]:

Classification:

	
Logistic	regression
Naïve	Bayes
Random	forests
Hidden	Markov	models

Clustering:

	
Canopy	clustering
K-means	clustering
Fuzzy	k-means
Expectation	maximization	(EM)

Recommenders/collaborative	filtering:

	
Nondistributed	recommenders
Distributed	item-based	collaborative	filtering

Pivotal	HD	Enterprise	with	HAWQ

Users	can	download	and	install	Apache	Hadoop	and	the	described	ecosystem	tools
directly	from	the	www.apache.org	website.	Another	installation	option	is
downloading	commercially	packaged	distributions	of	the	various	Apache	Hadoop
projects.	These	distributions	often	include	additional	user	functionality	as	well	as
cluster	management	utilities.	Pivotal	is	a	company	that	provides	a	distribution	called
Pivotal	HD	Enterprise,	as	illustrated	in	Figure	10.7.

Figure	10.7	Components	of	Pivotal	HD	Enterprise

Pivotal	HD	Enterprise	includes	several	Apache	software	components	that	have	been
presented	in	this	chapter.	Additional	Apache	software	includes	the	following:

	
Oozie:	Manages	Apache	Hadoop	jobs	by	acting	as	a	workflow	scheduler	system
Sqoop:	Efficiently	moves	data	between	Hadoop	and	relational	databases
Flume:	Collects	and	aggregates	streaming	data	(for	example,	log	data)

Additional	functionality	provided	by	Pivotal	includes	[39]	the	following:

	
Command	Center	is	a	robust	cluster	management	tool	that	allows	users	to	install,
configure,	monitor,	and	manage	Hadoop	components	and	services	through	a	web
graphical	interface.	It	simplifies	Hadoop	cluster	installation,	upgrades,	and	expansion
using	a	comprehensive	dashboard	with	instant	views	of	the	health	of	the	cluster	and
key	performance	metrics.	Users	can	view	live	and	historical	information	about	the
host,	application,	and	job-level	metrics	across	the	entire	Pivotal	HD	cluster.
Command	Center	also	provides	CLI	and	web	services	APIs	for	integration	into

http://www.apache.org

enterprise	monitoring	services.
Graphlab	on	Open	MPI	(Message	Passing	Interface)	is	a	highly	used	and	mature
graph-based,	high-performing,	distributed	computation	framework	that	easily	scales
to	graphs	with	billions	of	vertices	and	edges.	It	is	now	able	to	run	natively	within	an
existing	Hadoop	cluster,	eliminating	costly	data	movement.	This	allows	data
scientists	and	analysts	to	leverage	popular	algorithms	such	as	page	rank,
collaborative	filtering,	and	computer	vision	natively	in	Hadoop	rather	than	copying
the	data	somewhere	else	to	run	the	analytics,	which	would	lengthen	data	science
cycles.	Combined	with	MADlib’s	machine	learning	algorithms	for	relational	data,
Pivotal	HD	becomes	the	leading	advanced	analytical	platform	for	machine	learning
in	the	world.
Hadoop	Virtualization	Extensions	(HVE)	plug-ins	make	Hadoop	aware	of	the
virtual	topology	and	scale	Hadoop	nodes	dynamically	in	a	virtual	environment.
Pivotal	HD	is	the	first	Hadoop	distribution	to	include	HVE	plug-ins,	enabling	easy
deployment	of	Hadoop	in	an	enterprise	environment.	With	HVE,	Pivotal	HD	can
deliver	truly	elastic	scalability	in	the	cloud,	augmenting	on-premises	deployment
options.
HAWQ	(HAdoop	With	Query)	adds	SQL’s	expressive	power	to	Hadoop	to
accelerate	data	analytics	projects,	simplify	development	while	increasing
productivity,	expand	Hadoop’s	capabilities,	and	cut	costs.	HAWQ	can	help	render
Hadoop	queries	faster	than	any	Hadoop-based	query	interface	on	the	market	by
adding	rich,	proven,	parallel	SQL	processing	facilities.	HAWQ	leverages	existing
business	intelligence	and	analytics	products	and	a	workforce’s	existing	SQL	skills	to
bring	more	than	100	times	performance	improvement	to	a	wide	range	of	query	types
and	workloads.

10.3	NoSQL
NoSQL	(Not	only	Structured	Query	Language)	is	a	term	used	to	describe	those	data	stores
that	are	applied	to	unstructured	data.	As	described	earlier,	HBase	is	such	a	tool	that	is	ideal
for	storing	key/values	in	column	families.	In	general,	the	power	of	NoSQL	data	stores	is
that	as	 the	size	of	 the	data	grows,	 the	 implemented	solution	can	scale	by	simply	adding
additional	machines	to	the	distributed	system.	Four	major	categories	of	NoSQL	tools	and	a
few	examples	are	provided	next	[40].

Key/value	stores	contain	data	(the	value)	that	can	be	simply	accessed	by	a	given	identifier
(the	 key).	As	 described	 in	 the	MapReduce	 discussion,	 the	 values	 can	 be	 complex.	 In	 a
key/value	store,	there	is	no	stored	structure	of	how	to	use	the	data;	the	client	that	reads	and
writes	to	a	key/value	store	needs	to	maintain	and	utilize	the	logic	of	how	to	meaningfully
extract	the	useful	elements	from	the	key	and	the	value.	Here	are	some	uses	for	key/value
stores:

	
Using	a	customer’s	login	ID	as	the	key,	the	value	contains	the	customer’s
preferences.
Using	a	web	session	ID	as	the	key,	the	value	contains	everything	that	was	captured
during	the	session.

Document	stores	are	useful	when	the	value	of	the	key/value	pair	is	a	file	and	the	file	itself
is	 self-describing	 (for	 example,	 JSON	 or	 XML).	 The	 underlying	 structure	 of	 the
documents	 can	 be	 used	 to	 query	 and	 customize	 the	 display	 of	 the	 documents’	 content.
Because	 the	 document	 is	 self-describing,	 the	 document	 store	 can	 provide	 additional
functionality	 over	 a	 key/value	 store.	 For	 example,	 a	 document	 store	 may	 provide	 the
ability	 to	 create	 indexes	 to	 speed	 the	 searching	 of	 the	 documents.	 Otherwise,	 every
document	in	the	data	store	would	have	to	be	examined.	Document	stores	may	be	useful	for
the	following:

	
Content	management	of	web	pages
Web	analytics	of	stored	log	data

Column	family	stores	are	useful	for	sparse	datasets,	records	with	thousands	of	columns
but	only	a	few	columns	have	entries.	The	key/value	concept	still	applies,	but	in	this	case	a
key	 is	 associated	 with	 a	 collection	 of	 columns.	 In	 this	 collection,	 related	 columns	 are
grouped	 into	 column	 families.	 For	 example,	 columns	 for	 age,	 gender,	 income,	 and
education	 may	 be	 grouped	 into	 a	 demographic	 family.	 Column	 family	 data	 stores	 are
useful	in	the	following	instances:

	
To	store	and	render	blog	entries,	tags,	and	viewers’	feedback
To	store	and	update	various	web	page	metrics	and	counters

Graph	 databases	 are	 intended	 for	 use	 cases	 such	 as	 networks,	 where	 there	 are	 items

(people	or	web	page	links)	and	relationships	between	these	items.	While	it	is	possible	to
store	 graphs	 such	 as	 trees	 in	 a	 relational	 database,	 it	 often	 becomes	 cumbersome	 to
navigate,	 scale,	 and	 add	 new	 relationships.	 Graph	 databases	 help	 to	 overcome	 these
possible	obstacles	and	can	be	optimized	to	quickly	traverse	a	graph	(move	from	one	item
in	the	network	to	another	item	in	the	network).	Following	are	examples	of	graph	database
implementations:

	
Social	networks	such	as	Facebook	and	LinkedIn
Geospatial	applications	such	as	delivery	and	traffic	systems	to	optimize	the	time	to
reach	one	or	more	destinations

Table	10.2	provides	a	few	examples	of	NoSQL	data	stores.	As	is	often	the	case,	the	choice
of	 a	 specific	 data	 store	 should	 be	 made	 based	 on	 the	 functional	 and	 performance
requirements.	A	particular	data	store	may	provide	exceptional	functionality	in	one	aspect,
but	that	functionality	may	come	at	a	loss	of	other	functionality	or	performance.

Table	10.2	Examples	of	NoSQL	Data	Stores

Category Data	Store Website
Key/Value Redis redis.io

Voldemort www.project-voldemort.com/voldemort
Document CouchDB couchdb.apache.org

MongoDB www.mongodb.org

Column	family Cassandra cassandra.apache.org

HBase hbase.apache.org/

Graph FlockDB github.com/twitter/flockdb

Neo4j www.neo4j.org

http://redis.io
http://www.project-voldemort.com/voldemort
http://couchdb.apache.org
http://www.mongodb.org
http://cassandra.apache.org
http://hbase.apache.org/
http://github.com/twitter/flockdb
http://www.neo4j.org

Summary
This	chapter	examined	the	MapReduce	paradigm	and	its	application	in	Big	Data	analytics.
Specifically,	 it	 examined	 the	 implementation	 of	 MapReduce	 in	 Apache	 Hadoop.	 The
power	 of	 MapReduce	 is	 realized	 with	 the	 use	 of	 the	 Hadoop	 Distributed	 File	 System
(HDFS)	to	store	data	in	a	distributed	system.	The	ability	to	run	a	MapReduce	job	on	the
data	 stored	 across	 a	 cluster	 of	machines	 enables	 the	 parallel	 processing	 of	 petabytes	 or
exabytes	of	data.	Furthermore,	by	adding	additional	machines	to	the	cluster,	Hadoop	can
scale	as	the	data	volumes	grow.

This	 chapter	 examined	 several	 Apache	 projects	 within	 the	 Hadoop	 ecosystem.	 By
providing	a	higher-level	programming	language,	Apache	Pig	and	Hive	simplify	the	code
development	 by	 masking	 the	 underlying	 MapReduce	 logic	 to	 perform	 common	 data
processing	tasks	such	as	filtering,	joining	datasets,	and	restructuring	data.	Once	the	data	is
properly	conditioned	within	 the	Hadoop	cluster,	Apache	Mahout	can	be	used	 to	conduct
data	analyses	such	as	clustering,	classification,	and	collaborative	filtering.

The	strength	of	MapReduce	 in	Apache	Hadoop	and	 the	so	far	mentioned	projects	 in	 the
Hadoop	 ecosystem	 are	 in	 batch	 processing	 environments.	 When	 real-time	 processing,
including	read	and	writes,	are	required,	Apache	HBase	is	an	option.	HBase	uses	HDFS	to
store	large	volumes	of	data	across	the	cluster,	but	it	also	maintains	recent	changes	within
memory	 to	 ensure	 the	 real-time	 availability	 of	 the	 latest	 data.	Whereas	MapReduce	 in
Hadoop,	Pig,	and	Hive	are	more	general-purpose	 tools	 that	can	address	a	wide	 range	of
tasks,	HBase	is	a	somewhat	more	purpose-specific	 tool.	Data	will	be	retrieved	from	and
written	to	the	HBase	in	a	well-understood	manner.

HBase	 is	one	example	of	 the	NoSQL	(Not	only	Structured	Query	Language)	data	stores
that	 are	 being	 developed	 to	 address	 specific	 Big	 Data	 use	 cases.	 Maintaining	 and
traversing	social	network	graphs	are	examples	of	 relational	databases	not	being	 the	best
choice	 as	 a	 data	 store.	 However,	 relational	 databases	 and	 SQL	 remain	 powerful	 and
common	tools	and	will	be	examined	in	more	detail	in	Chapter	11.

Exercises
	
1.	 Research	and	document	additional	use	cases	and	actual	implementations	for	Hadoop.
2.	 Compare	and	contrast	Hadoop,	Pig,	Hive,	and	HBase.	List	strengths	and	weaknesses

of	each	tool	set.	Research	and	summarize	three	published	use	cases	for	each	tool	set.
Exercises	3	through	5	require	some	programming	background	and	a	working	Hadoop
environment.	The	text	of	the	novel	War	and	Peace	can	be	downloaded	from
http://onlinebooks	.library.upenn.edu/	and	used	as	the	dataset	for	these
exercises.	However,	other	datasets	can	easily	be	substituted.	Document	all	processing
steps	applied	to	the	data.

3.	 Use	MapReduce	in	Hadoop	to	perform	a	word	count	on	the	specified	dataset.
4.	 Use	Pig	to	perform	a	word	count	on	the	specified	dataset.
5.	 Use	Hive	to	perform	a	word	count	on	the	specified	dataset.

http://onlinebooks .library.upenn.edu/

Bibliography
	
1.	 [1]	Apache,	“Apache	Hadoop,”	[Online].	Available:	apache.org/.	[Accessed	8	May

2014].

2.	 [2]	Wikipedia,	“IBM	Watson,”	[Online].	Available:
http://en.wikipedia.org/wiki/IBM_Watson.	[Accessed	11	Februry	2014].

3.	 [3]	D.	Davidian,	“IBM.com,”	14	February	2011.	[Online].	Available:	https://www-
304.ibm.com/connections/blogs/davidian/tags/hadoop?lang=en_us.	[Accessed
11	February	2014].

4.	 [4]	IBM,	“IBM.com,”	[Online].	Available:	http://www-03.ibm.com/innovation/us/
watson/watson_in_healthcare.shtml.	[Accessed	11	February	2014].

5.	 [5]	Linkedin,	“LinkedIn,”	[Online].	Available:	http://www.linkedin.com/about-
us.	[Accessed	11	February	2014].

6.	 [6]	LinkedIn,	“Hadoop,”	[Online].	Available:
http://data.linkedin.com/projects/hadoop.	[Accessed	11	February	2014].

7.	 [7]	S.	Singh,	“http://developer.yahoo.com/,”	[Online].	Available:
http://developer.yahoo.com/blogs/hadoop/apache-hbase-yahoo-multi-

tenancy-	helm-again-171710422.html.	[Accessed	11	February	2014].

8.	 [8]	E.	Baldeschwieler,	“http://www.slideshare.net,”	[Online].	Available:
http://www.slideshare.net/ydn/hadoop-yahoo-internet-scale-data-

processing.	[Accessed	11	February	2014].

9.	 [9]	J.	Dean	and	S.	Ghemawat,	“MapReduce:	Simplified	Data	Processing	on	Large
Clusters,”	[Online].	Available:
http://research.google.com/archive/mapreduce.html.	[Accessed	11	February
2014].

10.	 [10]	D.	Gottfrid,	“Self-Service,	Prorated	Supercomputing	Fun!,”	01	November	2007.
[Online].	Available:	http://open.blogs.nytimes.com/2007/11/01/self-	service-
prorated-super-computing-fun/.	[Accessed	11	February	2014].

11.	 [11]	“apache.org,”	[Online].	Available:	http://www.apache.org/.	[Accessed	11
February	2014].

12.	 [12]	S.	Ghemawat,	H.	Gobioff,	and	S.-T.	Leung,	“The	Google	File	System,”
[Online].	Available:
http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-

sosp2003.pdf.	[Accessed	11	February	2014].

13.	 [13]	D.	Cutting,	“Free	Search:	Rambilings	About	Lucene,	Nutch,	Hadoop	and	Other
Stuff,”	[Online].	Available:	http://cutting.wordpress.com.	[Accessed	11	February
2014].

14.	 [14]	“Hadoop	Wiki	Disk	Setup,”	[Online].	Available:

http://hadoop.//apache.org
http://en.wikipedia.org/wiki/IBM_Watson
http://IBM.com
https://www-304.ibm.com/connections/blogs/davidian/tags/hadoop?lang=en_us
http://IBM.com
http://www-03.ibm.com/innovation/us/
http://www.linkedin.com/about-us
http://data.linkedin.com/projects/hadoop
http://developer.yahoo.com
http://developer.yahoo.com/blogs/hadoop/apache-hbase-yahoo-multi-tenancy
http://www.slideshare.net
http://www.slideshare.net/ydn/hadoop-yahoo-internet-scale-data-processing
http://research.google.com/archive/mapreduce.html
http://open.blogs.nytimes.com/2007/11/01/self-
http://apache.org
http://www.apache.org
http://static.googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf
http://cutting.wordpress.com

http://wiki.apache.org/hadoop/DiskSetup.	[Accessed	20	February	2014].

15.	 [15]	“wiki.apache.org/hadoop,”	[Online].	Available:
http://wiki.apache.org/hadoop/NameNode.	[Accessed	11	February	2014].

16.	 [16]	“HDFS	High	Availability,”	[Online].	Available:
http://hadoop.apache.org/docs/	current/hadoop-yarn/hadoop-yarn-
site/HDFSHighAvailabilityWithNFS.html.	[Accessed	8	May	2014].

17.	 [17]	Eclipse.	[Online].	Available:	https://www.eclipse.org/downloads/.
[Accessed	27	February	2014].

18.	 [18]	Apache,	“Hadoop	Streaming,”	[Online].	Available:
https://wiki.apache.org/hadoop/HadoopStreaming.	[Accessed	8	May	2014].

19.	 [19]	“Hadoop	Pipes,”	[Online].	Available:
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pipes/package-

summary.html.	[Accessed	19	February	2014].

20.	 [20]	“HDFS	Design,”	[Online].	Available:
http://hadoop.apache.org/docs/stable1/hdfs_design.html.	[Accessed	19
February	2014].

21.	 [21]	“BSP	Tutorial,”	[Online].	Available:
http://hama.apache.org/hama_bsp_tutorial	.html.	[Accessed	20	February	2014].

22.	 [22]	“Hama,”	[Online].	Available:	http://hama.apache.org/.	[Accessed	20
February	2014].

23.	 [23]	“PoweredByYarn,”	[Online].	Available:
http://wiki.apache.org/hadoop/PoweredByYarn.	[Accessed	20	February	2014].

24.	 [24]	“pig.apache.org,”	[Online].	Available:	http://pig.apache.org/.

25.	 [25]	“Pig,”	[Online].	Available:	http://pig.apache.org/.	[Accessed	11	Feb	2014].

26.	 [26]	“Piggybank,”	[Online].	Available:	https://cwiki.apache.org/confluence/
display/PIG/PiggyBank.	[Accessed	28	February	2014].

27.	 [27]	F.	Chang,	J.	Dean,	S.	Ghemawat,	W.C.	Hsieh,	D.A.	Wallach,	M.	Burrows,	T.
Chandra,	A.	Fikes,	and	R.E.	Gruber	Fay	Chang,	“Bigtable:	A	Distributed	Storage
System	for	Structured	Data,”	[Online].	Available:
http://research.google.com/archive/bigtable.html.	[Accessed	11	February
2014].

28.	 [28]	K.	Muthukkaruppan,	“The	Underlying	Technology	of	Messages,”	15	November
2010.	[Online].	Available:	http://www.facebook.com/notes/facebook-engineering/	the-
underlying-technology-of-messages/454991608919.	[Accessed	11	February	2014].

29.	 [29]	“HBase	Key	Value,”	[Online].	Available:
http://hbase.apache.org/book/regions	.arch.html.	[Accessed	28	February	2014].

30.	 [30]	“Number	of	Column	Families,”	[Online].	Available:
http://hbase.apache.org/book/number.of.cfs.html.

http://wiki.apache.org/hadoop/DiskSetup
http://apache.org/hadoop
http://wiki.apache.org/hadoop/NameNode
http://hadoop.apache.org/docs/
https://www.eclipse.org/downloads/
https://wiki.apache.org/hadoop/HadoopStreaming
http://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pipes/package-summary.html
http://hadoop.apache.org/docs/stable1/hdfs_design.html
http://hama.apache.org/hama_bsp_tutorial
http://hama.apache.org
http://wiki.apache.org/hadoop/PoweredByYarn
http://apache.org
http://pig.apache.org
http://pig.apache.org
https://cwiki.apache.org/confluence/
http://research.google.com/archive/bigtable.html
http://www.facebook.com/notes/facebook-engineering/
http://hbase.apache.org/book/regions
http://hbase.apache.org/book/number.of.cfs.html

31.	 [31]	“HBase	Regionserver,”	[Online].	Available:	http://hbase.apache.org/book/
regionserver.arch.html.	[Accessed	3	March	2014].

32.	 [32]	“Netcraft,”	[Online].	Available:
http://news.netcraft.com/archives/2014/02/03/	february-2014-web-server-
survey.html.	[Accessed	21	February	2014].

33.	 [33]	K.	Muthukkaruppan,	“The	Underlying	Technology	of	Messages,”	15	November
2010.	[Online].	Available:	http://www.facebook.com/notes/facebook-engineering/	the-
underlying-technology-of-messages/454991608919.	[Accessed	2011	February	2014].

34.	 [34]	N.	Spiegelberg.	[Online].	Available:
http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase.	[Accessed
11	February	2014].

35.	 [35]	“HBase	Rowkey,”	[Online].	Available:
http://hbase.apache.org/book/rowkey	.design.html.	[Accessed	4	March	2014].

36.	 [36]	“Zookeeper,”	[Online].	Available:	http://zookeeper.apache.org/.	[Accessed
11	Feb	2014].

37.	 [37]	“Zookeeper,”	[Online].	Available:	http://hbase.apache.org/book/zookeeper
.html.	[Accessed	21	February	2014].

38.	 [38]	“Mahout,”	[Online].	Available:	http://mahout.apache.org/users/basics/
algorithms.html.	[Accessed	19	February	2014].

39.	 [39]	“Pivotal	HD,”	[Online].	Available:	http://www.gopivotal.com/big-data/
pivotal-hd.	[Accessed	8	May	2014].

40.	 [40]	P.	J.	Sadalage	and	M.	Fowler,	NoSQL	Distilled:	A	Brief	Guide	to	the	Emerging
World	of	Polyglot,	Upper	Saddle	River,	NJ:	Addison	Wesley,	2013.

http://hbase.apache.org/book/
http://news.netcraft.com/archives/2014/02/03/
http://www.facebook.com/notes/facebook-engineering/
http://www.slideshare.net/brizzzdotcom/facebook-messages-hbase
http://hbase.apache.org/book/rowkey
http://zookeeper.apache.org
http://hbase.apache.org/book/zookeeper
http://mahout.apache.org/users/basics/
http://www.gopivotal.com/big-data/

Chapter	11
Advanced	Analytics—Technology	and	Tools:	In-Database
Analytics

Key	Concepts
MADlib
Regular	expressions
SQL
User-defined	functions
Window	functions

In-database	 analytics	 is	 a	 broad	 term	 that	 describes	 the	 processing	 of	 data	 within	 its
repository.	In	many	of	the	earlier	R	examples,	data	was	extracted	from	a	data	source	and
loaded	into	R.	One	advantage	of	in-database	analytics	is	that	the	need	for	movement	of	the
data	 into	 an	 analytic	 tool	 is	 eliminated.	 Also,	 by	 performing	 the	 analysis	 within	 the
database,	 it	 is	 possible	 to	 obtain	 almost	 real-time	 results.	 Applications	 of	 in-database
analytics	 include	 credit	 card	 transaction	 fraud	 detection,	 product	 recommendations,	 and
web	advertisement	selection	tailored	for	a	particular	user.

A	 popular	 open-source	 database	 is	 PostgreSQL.	 This	 name	 references	 an	 important	 in-
database	 analytic	 language	 known	 as	Structured	Query	 Language	 (SQL).	 This	 chapter
examines	basic	as	well	as	advanced	topics	in	SQL.	The	provided	examples	of	SQL	code
were	 tested	 against	Greenplum	 database	 4.1.1.1,	which	 is	 based	 on	 PostgreSQL	 8.2.15.
However,	the	presented	concepts	are	applicable	to	other	SQL	environments.

11.1	SQL	Essentials
A	 relational	 database,	 part	 of	 a	 Relational	 Database	 Management	 System	 (RDBMS),
organizes	 data	 in	 tables	 with	 established	 relationships	 between	 the	 tables.	 Figure	 11.1
shows	the	relationships	between	five	tables	used	to	store	details	about	orders	placed	at	an
e-commerce	retailer.

Figure	11.1	Relationship	diagram

The	 table	orders	 contains	 records	 for	 each	order	 transaction.	Each	 record	 contains	data
elements	such	as	the	product_id	ordered,	the	customer_id	for	the	customer	who	placed
the	order,	the	order_datetime,	and	so	on.	The	other	four	tables	provide	additional	details
about	 the	 ordered	 items	 and	 the	 customer.	 The	 lines	 between	 the	 tables	 in	 Figure	 11.1
illustrate	 the	relationships	between	the	tables.	For	example,	a	customer’s	first	name,	 last
name,	and	gender	from	the	customer	table	can	be	associated	with	an	orders	record	based
on	equality	of	the	customer_id	in	these	two	tables.

Although	it	is	possible	to	build	one	large	table	to	hold	all	the	order	and	customer	details,
the	 use	 of	 five	 tables	 has	 its	 advantages.	 The	 first	 advantage	 is	 disk	 storage	 savings.
Instead	of	storing	the	product	name,	which	can	be	several	hundred	characters	in	length,	in
the	orders	 table,	 a	much	 shorter	product_id,	 of	 perhaps	 a	 few	bytes,	 can	 be	 used	 and

stored	in	place	of	the	product’s	name.

Another	advantage	 is	 that	changes	and	corrections	are	easily	made.	 In	 this	example,	 the
table	 category	 is	 used	 to	 categorize	 each	 product.	 If	 it	 is	 discovered	 that	 an	 incorrect
category	was	assigned	to	a	particular	product	item,	only	the	category_id	 in	the	product
table	needs	to	be	updated.	Without	the	product	and	category	tables,	it	may	be	necessary
to	update	hundreds	of	thousands	of	records	in	the	orders	table.

A	third	advantage	is	that	products	can	be	added	to	the	database	prior	to	any	orders	being
placed.	Similarly,	 new	 categories	 can	 be	 created	 in	 anticipation	 of	 entirely	 new	product
lines	being	added	to	the	online	retailer’s	offerings	later.

In	a	relational	database	design,	the	preference	is	not	to	duplicate	pieces	of	data	such	as	the
customer’s	 name	 across	 multiple	 records.	 The	 process	 of	 reducing	 such	 duplication	 is
known	as	normalization.	 It	 is	 important	 to	 recognize	 that	 a	database	 that	 is	designed	 to
process	 transactions	may	 not	 necessarily	 be	 optimally	 designed	 for	 analytical	 purposes.
Transactional	 databases	 are	 often	 optimized	 to	 handle	 the	 insertion	 of	 new	 records	 or
updates	 to	 existing	 records,	 but	 not	 optimally	 tuned	 to	 perform	 ad-hoc	 querying.
Therefore,	 in	designing	analytical	data	warehouses,	 it	 is	 common	 to	combine	 several	of
the	tables	and	create	one	larger	table,	even	though	some	pieces	of	data	may	be	duplicated.

Regardless	 of	 a	 database’s	 purpose,	 SQL	 is	 typically	 used	 to	 query	 the	 contents	 of	 the
relational	database	tables	as	well	as	to	insert,	update,	and	delete	data.	A	basic	SQL	query
against	the	customer	table	may	look	like	this.
SELECT	first_name,

		last_name

FROM	customer

WHERE	customer_id	=	666730

first_name	last_name

Mason		Hu

This	 query	 returns	 the	 customer	 information	 for	 the	 customer	 with	 a	 customer_id	 of
666730.	This	SQL	query	consists	of	three	key	parts:

	
SELECT:	Specifies	the	table	columns	to	be	displayed
FROM:	Specifies	the	name	of	the	table	to	be	queried
WHERE:	Specifies	the	criterion	or	filter	to	be	applied

In	a	relational	database,	it	is	often	necessary	to	access	related	data	from	multiple	tables	at
once.	 To	 accomplish	 this	 task,	 the	 SQL	 query	 uses	 JOIN	 statements	 to	 specify	 the
relationships	between	the	multiple	tables.

11.1.1	Joins
Joins	 enable	 a	 database	 user	 to	 appropriately	 select	 columns	 from	 two	 or	 more	 tables.
Based	on	 the	 relationship	diagram	 in	Figure	11.1,	 the	 following	SQL	query	provides	 an
example	of	the	most	common	type	of	join:	an	inner	join.
SELECT	c.customer_id,

		o.order_id,

		o.product_id,

		o.item_quantity	AS	qty

FROM	orders	o

		INNER	JOIN	customer	c

				ON	o.customer_id	=	c.customer_id

WHERE	c.first_name	=	‘Mason’

		AND	c.last_name	=	‘Hu’

customer_id	order_id				product_id	qty

666730		51965-1172-6384-6923	33611		5

666730		79487-2349-4233-6891	34098		1

666730		39489-4031-0789-6076	33928		1

666730		29892-1218-2722-3191	33625		1

666730		07751-7728-7969-3140	34140		4

666730		85394-8022-6681-4716	33571		1

This	query	 returns	details	 of	 the	orders	placed	by	 customer	Mason	Hu.	The	SQL	query
joins	the	two	tables	in	the	FROM	clause	based	on	the	equality	of	the	customer_id	values.	In
this	query,	 the	specific	customer_id	value	for	Mason	Hu	does	not	need	to	be	known	by
the	programmer;	only	the	customer’s	full	name	needs	to	be	known.

Some	additional	functionality	beyond	the	use	of	the	INNER	JOIN	is	introduced	in	this	SQL
query.	Aliases	o	and	c	are	assigned	to	tables	orders	and	customer,	 respectively.	Aliases
are	used	in	place	of	the	full	table	names	to	improve	the	readability	of	the	query.	By	design,
the	column	names	specified	in	the	SELECT	clause	are	also	provided	in	the	output.	However,
the	outputted	column	name	can	be	modified	with	the	AS	keyword.	In	the	SQL	query,	the
values	of	item_quantity	are	displayed,	but	this	outputted	column	is	now	called	qty.

The	 INNER	 JOIN	 returns	 those	 rows	 from	 the	 two	 tables	where	 the	 ON	 criterion	 is	met.
From	 the	 earlier	 query	 on	 the	 customer	 table,	 there	 is	 only	 one	 row	 in	 the	 table	 for
customer	Mason	Hu.	Because	the	corresponding	customer_id	for	Mason	Hu	appears	six
times	in	the	orders	 table,	the	INNER	JOIN	query	returns	six	 records.	 If	 the	WHERE	clause
was	not	 included,	 the	query	would	have	returned	millions	of	rows	for	all	 the	orders	 that
had	a	matching	customer.

Suppose	an	analyst	wants	 to	know	which	customers	have	created	an	online	account	but
have	not	yet	placed	an	order.	The	next	query	uses	a	RIGHT	OUTER	JOIN	to	identify	the	first
five	customers,	alphabetically,	who	have	not	placed	an	order.	The	sorting	of	the	records	is
accomplished	with	the	ORDER	BY	clause.
SELECT	c.customer_id,

		c.first_name,

		c.last_name,

		o.order_id

FROM	orders	o

		RIGHT	OUTER	JOIN	customer	c

						ON	o.customer_id	=	c.customer_id

WHERE	o.order_id	IS	NULL

ORDER	BY	c.last_name,

			c.first_name

LIMIT	5

customer_id	first_name	last_name	order_id

143915		Abigail		Aaron

965886		Audrey		Aaron

982042		Carter		Aaron

125302		Daniel		Aaron

103964		Emily		Aaron	

In	 the	 SQL	 query,	 a	RIGHT	OUTER	JOIN	 is	 used	 to	 specify	 that	 all	 rows	 from	 the	 table
customer,	 on	 the	 right-hand	 side	 (RHS)	 of	 the	 join,	 should	 be	 returned,	 regardless	 of
whether	 there	 is	 a	matching	 customer_id	 in	 the	 orders	 table.	 In	 this	 query,	 the	 WHERE
clause	 restricts	 the	 results	 to	 only	 those	 joined	 customer	 records	 where	 there	 is	 no
matching	 order_id.	 NULL	 is	 a	 special	 SQL	 keyword	 that	 denotes	 an	 unknown	 value.
Without	the	WHERE	clause,	the	output	also	would	have	included	all	the	records	that	had	a
matching	customer_id	in	the	orders	table,	as	seen	in	the	following	SQL	query.
SELECT	c.customer_id,

		c.first_name,

		c.last_name,

		o.order_id

FROM	orders	o

		RIGHT	OUTER	JOIN	customer	c

						ON	o.customer_id	=	c.customer_id

ORDER	BY	c.last_name,

			c.first_name

LIMIT	5

customer_id	first_name	last_name	order_id

143915		Abigail		Aaron

222599		Addison		Aaron		50314-7576-3355-6960

222599		Addison		Aaron		21007-7541-1255-3531

222599		Addison		Aaron		19396-4363-4499-8582

222599		Addison		Aaron		69225-1638-2944-0264

In	 the	query	 results,	 the	 first	 customer,	Abigail	Aaron,	 had	not	 placed	 an	order,	 but	 the
next	customer,	Addison	Aaron,	has	placed	at	least	four	orders.

There	are	several	other	types	of	join	statements.	The	LEFT	OUTER	JOIN	performs	the	same
functionality	as	the	RIGHT	OUTER	JOIN	except	that	all	records	from	the	table	on	the	left-
hand	side	(LHS)	of	the	join	are	considered.	A	FULL	OUTER	JOIN	includes	all	records	from
both	 tables	 regardless	of	whether	 there	 is	a	matching	 record	 in	 the	other	 table.	A	CROSS
JOIN	combines	two	tables	by	matching	every	row	of	the	first	table	with	every	row	of	the
second	 table.	 If	 the	 two	 tables	have	100	and	1,000	rows,	 respectively,	 then	 the	resulting
CROSS	JOIN	of	these	tables	will	have	100,000	rows.

The	actual	 records	 returned	 from	any	 join	operation	depend	on	 the	 criteria	 stated	 in	 the
WHERE	 clause.	 Thus,	 careful	 consideration	 needs	 to	 be	 taken	 in	 using	 a	 WHERE	 clause,
especially	with	outer	joins.	Otherwise,	the	intended	use	of	the	outer	join	may	be	undone.

11.1.2	Set	Operations
SQL	provides	 the	ability	 to	perform	set	operations,	 such	as	unions	and	 intersections,	on
rows	of	data.	For	example,	suppose	all	 the	records	in	the	orders	 table	are	split	 into	two
tables.	The	orders_arch	table,	short	for	orders	archived,	contains	the	orders	entered	prior
to	 January	 2013.	 The	 orders	 transacted	 in	 or	 after	 January	 2013	 are	 stored	 in	 the
orders_recent	 table.	However,	all	 the	orders	 for	product_id	33611	are	 required	for	an
analysis.	One	 approach	would	be	 to	write	 and	 run	 two	 separate	 queries	 against	 the	 two

tables.	The	results	from	the	two	queries	could	then	be	merged	later	into	a	separate	file	or
table.	Alternatively,	one	query	could	be	written	using	the	UNION	ALL	operator	as	follows:
SELECT	customer_id,

		order_id,

		order_datetime,

		product_id,

		item_quantity	AS	qty

FROM	orders_arch

WHERE	product_id	=	33611

UNION	ALL

SELECT	customer_id,

		order_id,

		order_datetime,

		product_id,

		item_quantity	AS	qty

FROM	orders_recent

WHERE	product_id	=	33611

ORDER	BY	order_datetime

customer_id	order_id				order_datetime		product_id	qty

643126		13501-6446-6326-0182	2005-01-02	19:28:08	33611		1

725940		70738-4014-1618-2531	2005-01-08	06:16:31	33611		1

742448		03107-1712-8668-9967	2005-01-08	16:11:39	33611		1

.

.

.

640847		73619-0127-0657-7016	2013-01-05	14:53:27	33611		1

660446		55160-7129-2408-9181	2013-01-07	03:59:36	33611		1

647335		75014-7339-1214-6447	2013-01-27	13:02:10	33611		1

.

.

.

The	 first	 three	 records	 from	 each	 table	 are	 shown	 in	 the	 output.	 Because	 the	 resulting
records	 from	 both	 tables	 are	 appended	 together	 in	 the	 output,	 it	 is	 important	 that	 the
columns	 are	 specified	 in	 the	 same	 order	 and	 that	 the	 data	 types	 of	 the	 columns	 are
compatible.	UNION	ALL	merges	the	results	of	the	two	SELECT	statements	regardless	of	any
duplicate	 records	 appearing	 in	 both	 SELECT	 statements.	 If	 only	 UNION	 was	 used,	 any
duplicate	records,	based	on	all	the	specified	columns,	would	be	eliminated.

The	INTERSECT	operator	determines	any	identical	records	that	are	returned	by	two	SELECT
statements.	For	example,	if	one	wanted	to	know	what	items	were	purchased	prior	to	2013
as	well	as	later,	the	SQL	query	using	the	INTERSECT	operator	would	be	this.
SELECT	product_id

FROM	orders_arch

INTERSECT

SELECT	product_id

FROM	orders_recent

product_id

22

30

31

.

.

.

It	is	important	to	note	that	the	intersection	only	returns	a	product_id	if	it	appears	in	both
tables	and	returns	exactly	one	instance	of	such	a	product_id.	Thus,	only	a	list	of	distinct
product	IDs	is	returned	by	the	query.

To	count	the	number	of	products	that	were	ordered	prior	to	2013	but	not	after	that	point	in
time,	the	EXCEPT	operator	can	be	used	 to	exclude	 the	product	 IDs	 in	 the	orders_recent
table	 from	 the	 product	 IDs	 in	 the	 orders_arch	 table,	 as	 shown	 in	 the	 following	 SQL
query.
SELECT	COUNT(e.*)

FROM	(SELECT	product_id

		FROM	orders_arch

		EXCEPT

		SELECT	product_id

		FROM	orders_recent)	e

13569

The	 preceding	 query	 uses	 the	 COUNT	 aggregate	 function	 to	 determine	 the	 number	 of
returned	 rows	 from	 a	 second	 SQL	 query	 that	 includes	 the	 EXCEPT	 operator.	 This	 SQL
query	within	a	query	is	sometimes	called	a	subquery	or	a	nested	query.	Subqueries	enable
the	construction	of	fairly	complex	queries	without	having	to	first	execute	the	pieces,	dump
the	 rows	 to	 temporary	 tables,	 and	 then	 execute	 another	 SQL	 query	 to	 process	 those
temporary	tables.	Subqueries	can	be	used	in	place	of	a	table	within	the	FROM	clause	or	can
be	used	in	the	WHERE	clause.

11.1.3	Grouping	Extensions
Previously,	the	COUNT()	aggregate	function	was	used	to	count	the	number	of	returned	rows
from	 a	 query.	 Such	 aggregate	 functions	 often	 summarize	 a	 dataset	 after	 applying	 some
grouping	operation	to	it.	For	example,	it	may	be	desired	to	know	the	revenue	by	year	or
shipments	per	week.	The	 following	SQL	query	uses	 the	SUM()	 aggregate	 function	along
with	 the	 GROUP	 BY	 operator	 to	 provide	 the	 top	 three	 ordered	 items	 based	 on
item_quantity.
SELECT	i.product_id,

		SUM(i.item_quantity)	AS	total

FROM	orders_recent	i

GROUP	BY	i.product_id

ORDER	BY	SUM(i.item_quantity)	DESC

LIMIT	3

product_id	total

15072			6089

15066			6082

15060			6053

GROUP	 BY	 can	 use	 the	 ROLLUP()	 operator	 to	 calculate	 subtotals	 and	 grand	 totals.	 The
following	SQL	query	 employs	 the	 previous	 query	 as	 a	 subquery	 in	 the	WHERE	 clause	 to
supply	the	number	of	 items	ordered	by	year	for	 the	 top	three	items	ordered	overall.	The
ROLLUP	 operator	 provides	 the	 subtotals,	 which	 match	 the	 previous	 output	 for	 each

product_id,	as	well	as	the	grand	total.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total

FROM	orders_recent	r

WHERE	r.product_id	IN	(SELECT	o.product_id

						FROM	orders_recent	o

						GROUP	BY	o.product_id

						ORDER	BY	SUM(o.item_quantity)	DESC

						LIMIT	3)

GROUP	BY	ROLLUP(r.product_id,	DATE_PART(‘year’,	r.order_datetime))

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime)

product_id	year	total

15060		2013	5996

15060		2014	57

15060				6053

15066		2013	6030

15066		2014	52

15066				6082

15072		2013	6023

15072		2014	66

15072				6089

					18224

The	 CUBE	 operator	 expands	 on	 the	 functionality	 of	 the	 ROLLUP	 operator	 by	 providing
subtotals	for	each	column	specified	 in	 the	CUBE	statement.	Modifying	the	prior	query	by
replacing	the	ROLLUP	operator	with	the	CUBE	operator	results	 in	the	same	output	with	the
addition	of	the	subtotals	for	each	year.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total

FROM	orders_recent	r

WHERE	r.product_id	IN	(SELECT	o.product_id

						FROM	orders_recent	o

						GROUP	BY	o.product_id

						ORDER	BY	SUM(o.item_quantity)	DESC

						LIMIT	3)

GROUP	BY	CUBE(r.product_id,	DATE_PART(‘year’,	r.order_datetime))

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime

product_id	year	total

15060		2013	5996

15060		2014	57

15060				6053

15066		2013	6030

15066		2014	52

15066				6082

15072		2013	6023

15072		2014	66

15072				6089

			2013	18049			←	additional	row

			2014	175				←	additional	row

					18224

Because	null	values	in	the	output	indicate	the	subtotal	and	grand	total	rows,	care	must	be
taken	when	null	values	appear	in	the	columns	being	grouped.	For	example,	null	values
may	be	part	of	 the	dataset	being	analyzed.	The	GROUPING()	 function	can	 identify	which
rows	with	null	values	are	used	for	the	subtotals	or	grand	totals.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)			AS	year,

		SUM(r.item_quantity)							AS	total,

		GROUPING(r.product_id)						AS	group_id,

		GROUPING(DATE_PART(‘year’,	r.order_datetime))	AS	group_year

FROM	orders_recent	r

WHERE	r.product_id	IN	(SELECT	o.product_id

						FROM	orders_recent	o

						GROUP	BY	o.product_id

						ORDER	BY	SUM(o.item_quantity)	DESC

						LIMIT	3)

GROUP	BY	CUBE(r.product_id,	DATE_PART(‘year’,	r.order_datetime))

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime)

product_id	year	total	group_id	group_year

15060		2013	5996	0			0

15060		2014	57		0			0

15060				6053	0			1

15066		2013	6030	0			0

15066		2014	52		0			0

15066				6082	0			1

15072		2013	6023	0			0

15072		2014	66		0			0

15072				6089	0			1

				2013	18049	1			0

				2014	175		1			0

					18224	1			1

In	the	preceding	query,	group_year	is	set	to	1	when	a	total	is	calculated	across	the	values
of	year.	 Similarly,	group_id	 is	 set	 to	 1	when	 a	 total	 is	 calculated	 across	 the	 values	 of
product_id.

The	 functionality	of	ROLLUP	and	CUBE	 can	be	 customized	via	GROUPING	SETS.	 The	 SQL
query	 using	 the	 CUBE	 operator	 can	 be	 replaced	 with	 the	 following	 query	 that	 employs
GROUPING	SETS	to	provide	the	same	results.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total

FROM	orders_recent	r

WHERE	r.product_id	IN	(SELECT	o.product_id

						FROM	orders_recent	o

						GROUP	BY	o.product_id

						ORDER	BY	SUM(o.item_quantity)	DESC

						LIMIT	3)

GROUP	BY	GROUPING	SETS((r.product_id,

							DATE_PART(‘year’,	r.order_datetime)),

							(r.product_id),

							(DATE_PART(‘year’,	r.order_datetime)),

							())

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime)

The	listed	grouping	sets	define	the	columns	for	which	subtotals	will	be	provided.	The	last
grouping	 set,	 (),	 specifies	 that	 the	 overall	 total	 is	 supplied	 in	 the	 query	 results.	 For
example,	 if	 only	 the	 grand	 total	was	 desired,	 the	 following	 SQL	 query	 using	GROUPING
SETS	could	be	used.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total

FROM	orders_recent	r

WHERE	r.product_id	IN	(SELECT	o.product_id

						FROM	orders_recent	o

						GROUP	BY	o.product_id

						ORDER	BY	SUM(o.item_quantity)	DESC

						LIMIT	3)

GROUP	BY	GROUPING	SETS((r.product_id,

							DATE_PART(‘year’,	r.order_datetime)),

							())

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime)

product_id	year	total

15060		2013	5996

15060		2014	57

15066		2013	6030

15066		2014	52

15072		2013	6023

15072		2014	66

					18224

Because	the	GROUP	BY	clause	can	contain	multiple	CUBE,	ROLLUP,	or	column	specifications,
duplicate	grouping	sets	might	occur.	The	GROUP_ID()	function	identifies	the	unique	rows
with	 a	0	 and	 the	 redundant	 rows	with	 a	1,	 2,	 .…	To	 illustrate	 the	 function	GROUP_ID(),
both	ROLLUP	and	CUBE	are	used	when	only	one	specific	product_id	is	being	examined.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total,

		GROUP_ID()							AS	group_id

FROM	orders_recent	r

WHERE	r.product_id	IN	(15060)

GROUP	BY	ROLLUP(r.product_id,	DATE_PART(‘year’,	r.order_datetime)),

			CUBE(r.product_id,	DATE_PART(‘year’,	r.order_datetime))

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime),

			GROUP_ID()

product_id	year	total	group_id

15060		2013	5996	0

15060		2013	5996	1

15060		2013	5996	3

15060		2013	5996	4

15060		2013	5996	5

15060		2013	5996	6

15060		2014	57		0

15060		2014	57		1

15060		2014	57		2

15060		2014	57		3

15060		2014	57		4

15060		2014	57		5

15060		2014	57		6

15060				6053	0

15060				6053	1

15060				6053	2

			2013	5996	0

			2014	57		0

					6053	0

Filtering	on	the	group_id	values	equal	to	zero	yields	unique	records.	This	filtering	can	be
accomplished	with	the	HAVING	clause,	as	illustrated	in	the	next	SQL	query.
SELECT	r.product_id,

		DATE_PART(‘year’,	r.order_datetime)	AS	year,

		SUM(r.item_quantity)				AS	total,

		GROUP_ID()							AS	group_id

FROM	orders_recent	r

WHERE	r.product_id	IN	(15060)

GROUP	BY	ROLLUP(r.product_id,	DATE_PART(‘year’,	r.order_datetime)),

			CUBE(r.product_id,	DATE_PART(‘year’,	r.order_datetime))

HAVING	GROUP_ID()	=	0

ORDER	BY	r.product_id,

			DATE_PART(‘year’,	r.order_datetime),

			GROUP_ID()

product_id	year	total	group_id

15060		2013	5996	0

15060		2014	57		0

15060				6053	0

				2013	5996	0

				2014	57		0

					6053	0

11.2	In-Database	Text	Analysis
SQL	 offers	 several	 basic	 text	 string	 functions	 as	 well	 as	 wildcard	 search	 functionality.
Related	 SELECT	 statements	 and	 their	 results	 enclosed	 in	 the	 SQL	 comment	 delimiters,
/**/,	include	the	following:
SELECT	SUBSTRING(‘1234567890’,	3,2)	/*	returns	‘34’	*/

SELECT	‘1234567890’	LIKE	‘%7%’		/*	returns	True	*/

SELECT	‘1234567890’	LIKE	‘7%’			/*	returns	False	*/

SELECT	‘1234567890’	LIKE	‘_2%’		/*	returns	True	*/

SELECT	‘1234567890’	LIKE	‘_3%’		/*	returns	False	*/

SELECT	‘1234567890’	LIKE	‘__3%’		/*	returns	True	*/

This	 section	 examines	more	dynamic	 and	 flexible	 tools	 for	 text	 analysis,	 called	 regular
expressions,	 and	 their	 use	 in	 SQL	 queries	 to	 perform	 pattern	 matching.	 Table	 11.1
includes	 several	 forms	 of	 the	 comparison	 operator	 used	 with	 regular	 expressions	 and
related	SQL	examples	that	produce	a	True	result.

Table	11.1	Regular	Expression	Operators

Operator Description Example
˜ Contains	the	regular	expression	(case	sensitive) ‘123a567’	˜	‘a’

˜* Contains	the	regular	expression	(case	insensitive) ‘123a567’	˜*	‘A’

!˜ Does	not	contain	the	regular	expression	(case	sensitive) ‘123a567’	!˜	‘A’

!˜* Does	not	contain	the	regular	expression	(case	insensitive) ‘123a567’	!˜*	‘b’

More	 complex	 forms	 of	 the	 patterns	 that	 are	 specified	 at	 the	 RHS	 of	 the	 comparison
operator	can	be	constructed	by	using	the	elements	in	Table	11.2.

Table	11.2	Regular	Expression	Elements

Element Description
| Matches	item	a	or	b	(a|b)
^ Looks	for	matches	at	the	beginning	of	the	string
$ Looks	for	matches	at	the	end	of	the	string
. Matches	any	single	character
* Matches	preceding	item	zero	or	more	times
+ Matches	preceding	item	one	or	more	times
? Makes	the	preceding	item	optional
{n} Matches	the	preceding	item	exactly	n	times
() Matches	the	contents	exactly
[] Matches	any	of	the	characters	in	the	content,	such	as	[0–9]
\x Matches	a	nonalphanumeric	character	named	x
\y Matches	an	escape	string	\y

To	illustrate	the	use	of	these	elements,	the	following	SELECT	statements	include	examples
in	which	the	comparisons	are	True	or	False.
/*	matches	x	or	y	(‘x|y’)*/

SELECT	‘123a567’	˜	‘23|b’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘32|b’		/*	returns	False	*/

/*	matches	the	beginning	of	the	string	*/

SELECT	‘123a567’	˜	‘^123a’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘^123a7’		/*	returns	False	*/

/*	matches	the	end	of	the	string	*/

SELECT	‘123a567’	˜	‘a567$’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘27$’			/*	returns	False	*/

/*	matches	any	single	character	*/

SELECT	‘123a567’	˜	‘2.a’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘2..5’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘2…5’		/*	returns	False	*/

/*	matches	preceding	character	zero	or	more	times	*/

SELECT	‘123a567’	˜	‘2*’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘2*a’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘7*a’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘37*’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘87*’			/*	returns	False	*/

/*	matches	preceding	character	one	or	more	times	*/

SELECT	‘123a567’	˜	‘2+’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘2+a’			/*	returns	False	*/

SELECT	‘123a567’	˜	‘7+a’			/*	returns	False	*/

SELECT	‘123a567’	˜	‘37+’			/*	returns	False	*/

SELECT	‘123a567’	˜	‘87+’			/*	returns	False	*/

/*	makes	the	preceding	character	optional	*/

SELECT	‘123a567’	˜	‘2?’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘2?a’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘7?a’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘37?’			/*	returns	True	*/

SELECT	‘123a567’	˜	‘87?’			/*	returns	False	*/

/*	Matches	the	preceding	item	exactly	{n}	times	*/

SELECT	‘123a567’	˜	‘5{0}’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘5{1}’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘5{2}’		/*	returns	False	*/

SELECT	‘1235567’	˜	‘5{2}’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘8{0}’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘8{1}’		/*	returns	False	*/

/*	Matches	the	contents	exactly	*/

SELECT	‘123a567’	˜	‘(23a5)’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘(13a5)’		/*	returns	False	*/

SELECT	‘123a567’	˜	‘(23a5)7*’	/*	returns	True	*/

SELECT	‘123a567’	˜	‘(23a5)7+’	/*	returns	False	*/

/*	Matches	any	of	the	contents	*/

SELECT	‘123a567’	˜	‘[23a8]’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘[8a32]’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘[(13a5)]’	/*	returns	True	*/

SELECT	‘123a567’	˜	‘[xyz9]’		/*	returns	False	*/

SELECT	‘123a567’	˜	‘[a-z]’		/*	returns	True	*/

SELECT	‘123a567’	˜	‘[b-z]’		/*	returns	False	*/

/*	Matches	a	nonalphanumeric	*/

SELECT	‘$50K+’	˜	‘\$’			/*	returns	True	*/

SELECT	‘$50K+’	˜	‘\+’			/*	returns	True	*/

SELECT	‘$50K+’	˜	‘\$\+’		/*	returns	False	*/

/*	Use	of	the	backslash	for	escape	clauses						*/

/*	\w	denotes	the	characters	0-9,	a-z,	A-Z,	or	the	underscore(_)	*/

SELECT	‘123a567’	˜	‘\w’		/*	returns	True	*/

SELECT	‘123a567+’	˜	‘\w’		/*	returns	True	*/

SELECT	‘++++++++’	˜	‘\w’		/*	returns	False	*/

SELECT	‘_’	˜	‘\w’				/*	returns	True	*/

SELECT	‘+’	˜	‘\w’				/*	returns	False	*/

Regular	 expressions	 can	 be	 developed	 to	 identify	 mailing	 addresses,	 e-mail	 addresses,
phone	numbers,	or	currency	amounts.
/*	use	of	more	complex	regular	expressions	*/

SELECT	‘$50K+’	˜	‘\$[0-9]*K\+’			/*	returns	True	*/

SELECT	‘$50K+’	˜	‘\$[0-9]K\+’			/*	returns	False	*/

SELECT	‘$50M+’	˜	‘\$[0-9]*K\+’			/*	returns	False	*/

SELECT	‘$50M+’	˜	‘\$[0-9]*(K|M)\+’		/*	returns	True	*/

/*	check	for	ZIP	code	of	form	#####-####	*/

SELECT	‘02038-2531’	˜	‘[0-9]{5}-[0-9]{4}’	/*	returns	True	*/

SELECT	‘02038-253’	˜	‘[0-9]{5}-[0-9]{4}’	/*	returns	False	*/

SELECT	‘02038’		˜	‘[0-9]{5}-[0-9]{4}’	/*	returns	False	*/

So	far,	the	application	of	regular	expressions	has	been	illustrated	by	including	the	Boolean
comparison	in	a	SELECT	statement	as	if	the	result	of	the	comparison	was	to	be	returned	as	a
column.	 In	 practice,	 these	 comparisons	 are	 used	 in	 a	 SELECT	 statement’s	 WHERE	 clause
against	a	table	column	to	identify	specific	records	of	interest.	For	example,	the	following
SQL	query	identifies	those	ZIP	codes	in	a	table	of	customer	addresses	that	do	not	match
the	form	#####-####.	Once	the	invalid	ZIP	codes	are	identified,	corrections	can	be	made
by	manual	or	automated	means.
SELECT	address_id,

		customer_id,

		city,

		state,

		zip,

		country

FROM	customer_addresses

WHERE	zip	!˜	‘^[0-9]{5}-[0-9]{4}$’

address_id	customer_id	city			state	zip			country

7			13			SINAI			SD		57061-o236	USA

18			27			SHELL	ROCK	IA		S0670-0480	USA

24			37			NASHVILLE		TN		37228-219		USA

.

.

.

SQL	functions	enable	the	use	of	regular	expressions	to	extract	the	matching	text,	such	as
SUBSTRING(),	as	well	as	update	the	text,	such	as	REGEXP_REPL().
/*	extract	ZIP	code	from	text	string	*/

SELECT	SUBSTRING(‘4321A	Main	Street	Franklin,	MA	02038-2531’

FROM	‘[0-9]{5}-[0-9]{4}’)

02038-2531

/*	replace	long	format	zip	code	with	short	format	ZIP	code	*/

SELECT	REGEXP_REPLACE(‘4321A	Main	Street	Franklin,	MA	02038-2531’,

		‘[0-9]{5}-[0-9]{4}’,

		SUBSTRING(SUBSTRING(‘4321A	Main	Street	Franklin,	MA	02038-2531’

FROM	‘[0-9]{5}-[0-9]{4}’),1,5))

4321A	Main	Street	Franklin,	MA	02038

Regular	 expressions	 provide	 considerable	 flexibility	 in	 searching	 and	 modifying	 text
strings.	However,	it	is	quite	easy	to	build	a	regular	expression	that	does	not	work	entirely
as	intended.	For	example,	a	particular	operation	may	work	properly	with	a	given	dataset,
but	 future	 datasets	 may	 contain	 new	 cases	 to	 be	 handled.	 Thus,	 it	 is	 important	 to
thoroughly	test	any	SQL	code	using	regular	expressions.

11.3	Advanced	SQL
Building	 upon	 the	 foundation	 provided	 in	 the	 earlier	 parts	 of	 this	 chapter,	 this	 section
presents	advanced	SQL	techniques	that	can	simplify	in-database	analytics.

11.3.1	Window	Functions
In	Section	11.1.3,	several	SQL	examples	using	aggregate	functions	and	grouping	options
to	summarize	a	dataset	were	provided.	A	window	function	enables	aggregation	 to	occur
but	 still	 provides	 the	 entire	 dataset	with	 the	 summary	 results.	 For	 example,	 the	RANK()
function	can	be	used	 to	order	a	 set	of	 rows	based	on	some	attribute.	Based	on	 the	SQL
table,	orders_recent,	 introduced	in	Section	11.1.2,	 the	following	SQL	query	provides	a
ranking	of	customers	based	on	their	total	expenditures.
SELECT	s.customer_id,

		s.sales,

		RANK()

			OVER	(

			ORDER	BY	s.sales	DESC)	AS	sales_rank

FROM	(SELECT	r.customer_id,

				SUM(r.item_quantity	*	r.item_price)	AS	sales

		FROM	orders_recent	r

		GROUP	BY	r.customer_id)	s

customer_id	sales		sales_rank

683377		27840.00	1

238107		19983.65	2

661519		18134.11	3

628278		17965.44	4

619660		17944.20	5

.

.

.

The	 subquery	 in	 the	 FROM	 clause	 computes	 the	 total	 sales	 for	 each	 customer.	 In	 the
outermost	 SELECT	 clause,	 the	 sales	 are	 ranked	 in	 descending	 order.	Window	 functions,
such	as	RANK(),	are	followed	by	an	OVER	clause	that	specifies	how	the	function	should	be
applied.	Additionally,	the	window	function	can	be	applied	to	groupings	of	a	given	dataset
using	the	PARTITION	BY	clause.	The	following	SQL	query	provides	the	customer	rankings
based	on	sales	within	product	categories.
SELECT	s.category_name,

		s.customer_id,

		s.sales,

		RANK()

			OVER	(

			PARTITION	BY	s.category_name

			ORDER	BY	s.sales	DESC)	AS	sales_rank

FROM	(SELECT	c.category_name,

				r.customer_id,

				SUM(r.item_quantity	*	r.item_price)	AS	sales

		FROM	orders_recent	r

				LEFT	OUTER	JOIN	product	p

							ON	r.product_id	=	p.product_id

				LEFT	OUTER	JOIN	category	c

							ON	p.category_id	=	c.category_id

		GROUP	BY	c.category_name,

					r.customer_id)	s

ORDER	BY	s.category_name,

			sales_rank

category_name						customer_id	sales		sales_rank

Apparel							596396		4899.93		1

Apparel							319036		2799.96		2

Apparel							455683		2799.96		2

Apparel							468209		2700.00		4

Apparel							456107		2118.00		5

.

.

.

Apparel							430126		2.20		78731

Automotive	Parts	and	Accessories	362572		5706.48		1

Automotive	Parts	and	Accessories	587564		5109.12		2

Automotive	Parts	and	Accessories	377616		4279.86		3

Automotive	Parts	and	Accessories	443618		4279.86		3

Automotive	Parts	and	Accessories	590658		3668.55		5

.

.

.

In	 this	 case,	 the	 subquery	 determines	 each	 customer’s	 sales	 in	 the	 respective	 product
category.	The	outer	SELECT	 clause	 then	 ranks	 the	customer’s	 sales	within	each	category.
The	provided	portions	of	the	SQL	query	output	illustrate	that	the	ranking	begins	at	1	for
each	 category	 and	 demonstrate	 how	 the	 rankings	 are	 affected	 by	 ties	 in	 the	 amount	 of
sales.

A	second	use	of	windowing	functions	is	to	perform	calculations	over	a	sliding	window	in
time.	For	example,	moving	averages	can	be	used	to	smooth	weekly	sales	figures	that	may
exhibit	large	week-to-week	variation,	as	shown	in	the	plot	in	Figure	11.2.

Figure	11.2	Weekly	sales	for	an	online	retailer

The	 following	 SQL	 query	 illustrates	 how	 moving	 averages	 can	 be	 implemented	 using
window	functions:
SELECT	year,

		week,

		sales,

		AVG(sales)

			OVER	(

			ORDER	BY	year,	week

			ROWS	BETWEEN	2	PRECEDING	AND	2	FOLLOWING)	AS	moving_avg

FROM	sales_by_week

WHERE	year	=	2014

		AND	week	<=	26

ORDER	BY	year,

			week

year	week	sales		moving_avg

2014	1		1564539		1572999.333	←average	of	weeks	1,	2,	3

2014	2		1572128		1579941.75	←average	of	weeks	1,	2,	3,	4

2014	3		1582331		1579982.6	←average	of	weeks	1,	2,	3,	4,	5

2014	4		1600769		1584834.4	←average	of	weeks	2,	3,	4,	5,	6

2014	5		1580146		1583037.2	←average	of	weeks	3,	4,	5,	6,	7

2014	6		1588798		1579179.6

2014	7		1563142		1563975.6

2014	8		1563043		1553665

2014	9		1524749		1547534.8

2014	10		1528593		1548051.6

2014	11		1558147		1545714.2

2014	12		1565726		1549404

2014	13		1551356		1548812.6

2014	14		1543198		1543820.2

2014	15		1525636		1536767.6

2014	16		1533185		1531662.2

2014	17		1530463		1527313.6

2014	18		1525829		1528787.8

2014	19		1521455		1532649

2014	20		1533007		1533370

2014	21		1552491		1532116

2014	22		1534068		1539713.6

2014	23		1519559		1538199.6

2014	24		1559443		1539086.2	←average	of	weeks	22,23,24,25,26

2014	25		1525437		1540340.75	←average	of	weeks	23,24,25,26

2014	26		1556924		1547268	←average	of	weeks	24,25,26

The	windowing	function	uses	the	built-in	aggregate	function	AVG(),	which	computes	the
arithmetic	 average	 of	 a	 set	 of	 values.	 The	 ORDER	 BY	 clause	 sorts	 the	 records	 in
chronological	order	and	specifies	which	rows	should	be	included	in	the	averaging	process
with	the	current	row.	In	this	SQL	query,	the	moving	average	is	based	on	the	current	row,
the	preceding	two	rows,	and	the	following	two	rows.	Because	the	dataset	does	not	include
the	last	two	weeks	of	2013,	the	first	moving	average	value	of	1,572,999.333	is	the	average
of	 the	 first	 three	weeks	 of	 2014:	 the	 current	week	 and	 the	 two	 subsequent	weeks.	 The
moving	 average	value	 for	 the	 second	week,	 1,579,941.75,	 is	 the	 sales	value	 for	week	2
averaged	with	the	prior	week	and	the	two	subsequent	weeks.	For	weeks	3	through	24,	the
moving	average	is	based	on	the	sales	from	5-week	periods,	centered	on	the	current	week.
At	week	25,	the	window	begins	to	include	fewer	weeks	because	the	following	weeks	are
unavailable.	Figure	11.3	illustrates	the	applied	smoothing	process	against	the	weekly	sales
figures.

Figure	11.3	Weekly	sales	with	moving	averages

Built-in	 window	 functions	 may	 vary	 by	 SQL	 implementation.	 Table	 11.3	 [1]	 from	 the
PostgreSQL	documentation	includes	the	list	of	general-purpose	window	functions.

Table	11.3	Window	Functions

Function Description
row_number() Number	of	the	current	row	within	its	partition,	counting	from	1.

rank()
Rank	of	the	current	row	with	gaps;	same	as	row_number	of	its	first

peer.

dense_rank()
Rank	of	the	current	row	without	gaps;	this	function	counts	peer

groups.
percent_rank() Relative	rank	of	the	current	row:	(rank	–	1)	/	(total	rows	–	1).

cume_dist()
Relative	rank	of	the	current	row:	(number	of	rows	preceding	or	peer

with	current	row)	/	(total	rows).
ntile(num_buckets

integer)

Integer	ranging	from	1	to	the	argument	value,	dividing	the	partition
as	equally	as	possible.

lag(value	any	[,

offset	integer	[,

default	any]])

Returns	the	value	evaluated	at	the	row	that	is	offset	rows	before	the
current	row	within	the	partition;	if	there	is	no	such	row,	instead

return	default.	Both	offset	and	default	are	evaluated	with	respect	to
the	current	row.	If	omitted,	offset	defaults	to	1	and	default	to	null.

lead(value	any	[,

offset	integer	[,

default	any]])

Returns	the	value	evaluated	at	the	row	that	is	offset	rows	after	the
current	row	within	the	partition;	if	there	is	no	such	row,	instead

return	default.	Both	offset	and	default	are	evaluated	with	respect	to
the	current	row.	If	omitted,	the	offset	defaults	to	1	and	the	default	to

null.
first_value(value

any)
Returns	the	value	evaluated	at	the	first	row	of	the	window	frame.

last_value(value

any)
Returns	the	value	evaluated	at	the	last	row	of	the	window	frame.

nth_value(value

any,	nth	integer)

Returns	the	value	evaluated	at	the	nth	row	of	the	window	frame
(counting	from	1);	null	if	no	such	row.

http://www.postgresql.org/docs/9.3/static/functions-window.html

11.3.2	User-Defined	Functions	and	Aggregates
When	 the	 built-in	 SQL	 functions	 are	 insufficient	 for	 a	 particular	 task	 or	 analysis,	 SQL
enables	the	user	to	create	user-defined	functions	and	aggregates.	This	custom	functionality
can	 be	 incorporated	 into	 SQL	 queries	 in	 the	 same	ways	 that	 the	 built-in	 functions	 and
aggregates	 are	 used.	 User-defined	 functions	 can	 also	 be	 created	 to	 simplify	 processing
tasks	that	a	user	may	commonly	encounter.

For	example,	a	user-defined	function	can	be	written	to	translate	text	strings	for	female	(F)
and	male	(M)	 to	0	and	1,	 respectively.	Such	a	 function	may	be	helpful	when	formatting
data	 for	 use	 in	 a	 regression	 analysis.	 Such	 a	 function,	 fm_convert(),	 could	 be
implemented	as	follows:
CREATE	FUNCTION	fm_convert(text)	RETURNS	integer	AS

‘SELECT	CASE

			WHEN	$1	=	”F”	THEN	0

			WHEN	$1	=	”M”	THEN	1

			ELSE	NULL

		END’

http://www.postgresql.org/docs/9.3/static/functions-window.html

LANGUAGE	SQL

IMMUTABLE

RETURNS	NULL	ON	NULL	INPUT

In	declaring	the	function,	the	SQL	query	is	placed	within	single	quotes.	The	first	and	only
passed	value	is	referenced	by	$1.	The	SQL	query	is	followed	by	a	LANGUAGE	statement	that
explicitly	states	that	the	preceding	statement	is	written	in	SQL.	Another	option	is	to	write
the	code	in	C.	IMMUTABLE	indicates	that	the	function	does	not	update	the	database	and	does
not	use	the	database	for	lookups.	The	IMMUTABLE	declaration	informs	the	database’s	query
optimizer	 how	 best	 to	 implement	 the	 function.	 The	 RETURNS	 NULL	 ON	 NULL	 INPUT

statement	specifies	how	the	function	addresses	the	case	when	any	of	the	inputs	are	null
values.

In	the	online	retail	example,	the	fm_convert()	function	can	be	applied	to	the	customer_
gender	column	in	the	customer_demographics	table	as	follows.
SELECT	customer_gender,

		fm_convert(customer_gender)	as	male

FROM	customer_demographics

LIMIT	5

customer_gender		male

M					1

F					0

F					0

M					1

M					1

Built-in	 and	 user-defined	 functions	 can	 be	 incorporated	 into	 user-defined	 aggregates,
which	 can	 then	 be	 used	 as	 a	window	 function.	 In	Section	 11.3.1,	 a	window	 function	 is
used	to	calculate	moving	averages	to	smooth	a	data	series.	In	this	section,	a	user-defined
aggregate	 is	created	 to	calculate	an	Exponentially	Weighted	Moving	Average	 (EWMA).
For	a	given	time	series,	the	EWMA	series	is	defined	as	shown	in	Equation	11.1.

11.1	

where	0	≤	α	≤	1

The	smoothing	factor,	determines	how	much	weight	to	place	on	the	latest	point	in	a	given
time	series.	By	repeatedly	substituting	into	Equation	11.1	for	the	prior	value	of	the	EWMA
series,	 it	 can	 be	 shown	 that	 the	 weights	 against	 the	 original	 series	 are	 exponentially
decaying	backward	in	time.

To	implement	EWMA	smoothing	as	a	user-defined	aggregate	in	SQL,	the	functionality	in
Equation	11.1	needs	to	be	implemented	first	as	a	user-defined	function.
CREATE	FUNCTION	ewma_calc(numeric,	numeric,	numeric)	RETURNS	numeric	as

/*	$1	=	prior	value	of	EWMA			*/

/*	$2	=	current	value	of	series		*/

/*	$3	=	alpha,	the	smoothing	factor	*/

‘SELECT	CASE

			WHEN	$3	IS	NULL						/*	bad	alpha	*/

			OR	$3	<	0

			OR	$3	>	1	THEN	NULL

			WHEN	$1	IS	NULL	THEN	$2				/*	t	=	1		*/

			WHEN	$2	IS	NULL	THEN	$1				/*	y	is	unknown	*/

			ELSE	($3	*	$2)	+	(1-$3)	*$1			/*	t	>=	2		*/

		END’

LANGUAGE	SQL

IMMUTABLE

Accepting	 three	 numeric	 inputs	 as	 defined	 in	 the	 comments,	 the	 ewma_calc()	 function
addresses	possible	bad	values	of	the	smoothing	factor	as	well	as	the	special	case	in	which
the	 other	 inputs	 are	 null.	 The	 ELSE	 statement	 performs	 the	 usual	 EWMA	 calculation.
Once	this	function	is	created,	it	can	be	referenced	in	the	user-defined	aggregate,	ewma().
CREATE	AGGREGATE	ewma(numeric,	numeric)

		(SFUNC	=	ewma_calc,

		STYPE	=	numeric,

		PREFUNC	=	dummy_function)

In	the	CREATE	AGGREGATE	statement	for	ewma(),	SFUNC	assigns	the	state	transition	function
(ewma_calc	 in	 this	example)	and	STYPE	assigns	 the	data	 type	of	 the	variable	 to	store	 the
current	state	of	 the	aggregate.	The	variable	for	 the	current	state	 is	made	available	 to	 the
ewma_calc()	 function	 as	 the	 first	 variable,	 $1.	 In	 this	 case,	 because	 the	 ewma_calc()
function	 requires	 three	 inputs,	 the	 ewma()	 aggregate	 requires	 only	 two	 inputs;	 the	 state
variable	 is	 always	 internally	 available	 to	 the	 aggregate.	 The	 PREFUNC	 assignment	 is
required	 in	 the	 Greenplum	 database	 for	 use	 in	 a	 massively	 parallel	 processing	 (MPP)
environment.	 For	 some	 aggregates,	 it	 is	 necessary	 to	 perform	 some	 preliminary
functionality	on	the	current	state	variables	for	a	couple	of	servers	in	the	MPP	environment.
In	 this	 example,	 the	 assigned	 PREFUNC	 function	 is	 added	 as	 a	 placeholder	 and	 is	 not
utilized	in	the	proper	execution	of	the	ewma()	aggregate	function.

As	 a	 window	 function,	 the	 ewma()	 aggregate,	 with	 a	 smoothing	 factor	 of	 0.1,	 can	 be
applied	to	the	weekly	sales	data	as	follows.
SELECT	year,

		week,

		sales,

		ewma(sales,	.1)

			OVER	(

			ORDER	BY	year,	week)

FROM	sales_by_week

WHERE	year	=	2014

		AND	week	<=	26

ORDER	BY	year,

			week

year	week	sales		ewma

2014	1		1564539		1564539.00

2014	2		1572128		1565297.90

2014	3		1582331		1567001.21

2014	4		1600769		1570377.99

2014	5		1580146		1571354.79

.

.

.

2014	23		1519559		1542043.47

2014	24		1559443		1543783.42

2014	25		1525437		1541948.78

2014	26		1556924		1543446.30

Figure	11.4	includes	the	EWMA	smoothed	series	to	the	plot	from	Figure	11.3.

Figure	11.4	Weekly	sales	with	moving	average	and	EWMA

Increasing	 the	 value	 of	 the	 smoothing	 factor	 from	 0.1	 causes	 the	EWMA	 to	 follow	 the
actual	 data	 better,	 but	 the	 trade-off	 is	 that	 large	 fluctuations	 in	 the	 data	 cause	 larger
fluctuations	 in	 the	 smoothed	 series.	 The	 user-defined	 aggregate,	 ewma(),	 is	 used	 in	 the
SQL	query	in	the	same	manner	as	any	other	window	function	with	the	specification	of	the
OVER	clause.

11.3.3	Ordered	Aggregates
Sometimes	 the	 value	 of	 an	 aggregate	 may	 depend	 on	 an	 ordered	 set	 of	 values.	 For
example,	to	determine	the	median	of	a	set	of	values,	it	is	common	to	first	sort	the	values
from	smallest	to	largest	and	identify	the	median	from	the	center	of	the	sorted	values.	The
sorting	 can	 be	 accomplished	 by	 using	 the	 function	 array_agg().	 The	 following	 SQL
query	calculates	the	median	of	the	weekly	sales	data.
SELECT	(d.ord_sales[d.n/2	+	1]	+

						d.ord_sales[(d.n	+	1)/2])	/	2.0	as	median

FROM	(SELECT	ARRAY_AGG(s.sales	ORDER	BY	s.sales)	AS	ord_sales,

				COUNT(*)		AS	n

		FROM	sales_by_week	s

		WHERE	s.year	=	2014

				AND	s.week	<=	26)	d

median

1551923.5

In	general,	the	function	ARRAY_AGG()	builds	an	array	from	a	table	column.	Executing	the
subquery	from	the	previous	SQL	query	for	just	the	first	five	weeks	illustrates	the	creation

of	the	array,	denoted	by	the	braces,	and	the	sorted	weekly	sales	within	the	array.
SELECT	ARRAY_AGG(s.sales	ORDER	BY	s.sales)	AS	ord_sales,

		COUNT(*)	AS	n

FROM	sales_by_week	s

WHERE	s.year	=	2014

		AND	s.week	<=	5

ord_sales										n

{1564539,1572128,1580146,1582331,1600769}		5

Besides	 creating	 an	 array,	 the	 values	 can	 be	 concatenated	 together	 into	 one	 text	 string
using	the	string_agg()	function.
SELECT	STRING_AGG(s.sales	ORDER	BY	s.sales)	AS	ord_sales,

		COUNT(*)	AS	n

FROM	sales_by_week	s

WHERE	s.year	=	2014

		AND	s.week	<=	5

ord_sales										n

15645391572128158014615823311600769			5

However,	 in	 this	 particular	 example,	 it	 may	 be	 useful	 to	 separate	 the	 values	 with	 a
delimiter,	such	as	a	comma.
SELECT	STRING_AGG(s.sales,	‘,’	ORDER	BY	s.sales)	AS	ord_sales,

		COUNT(*)	AS	n

FROM	sales_by_week	s

WHERE	s.year	=	2014

		AND	s.week	<=	5

ord_sales										n

1564539,1572128,1580146,1582331,1600769		5

Although	the	sorted	sales	appear	to	be	an	array,	there	are	no	braces	around	the	output.	So
the	displayed	ordered	sales	are	a	text	string.

11.3.4	MADlib
SQL	implementations	include	many	basic	analytical	and	statistical	built-in	functions,	such
as	means	and	variances.	As	illustrated	in	this	chapter,	SQL	also	enables	the	development
of	user-defined	functions	and	aggregates	to	provide	additional	functionality.	Furthermore,
SQL	databases	can	utilize	an	external	 library	of	functions.	One	such	library	is	known	as
MADlib.	The	description	 file	 [2]	 included	with	 the	MADlib	 library	download	 states	 the
following:

MADlib	 is	 an	open-source	 library	 for	 scalable	 in-database	 analytics.	 It	 offers	 data-
parallel	 implementations	of	mathematical,	statistical,	and	machine	learning	methods
for	structured	and	unstructured	data.

The	 concept	 of	 Magnetic/Agile/Deep	 (MAD)	 analysis	 skills	 was	 introduced	 in	 a	 2009
paper	by	Cohen,	et	al.	[3].	This	paper	describes	the	components	of	MAD	as	follows:

	
Magnetic:	Traditional	Enterprise	Data	Warehouse	(EDW)	approaches	“repel”	new
data	sources,	discouraging	their	incorporation	until	they	are	carefully	cleansed	and

integrated.	Given	the	ubiquity	of	data	in	modern	organizations,	a	data	warehouse	can
keep	pace	today	only	by	being	“magnetic”:	attracting	all	the	data	sources	that	crop	up
within	an	organization	regardless	of	data	quality	niceties.
Agile:	Data	Warehousing	orthodoxy	is	based	on	long-range	and	careful	design	and
planning.	Given	growing	numbers	of	data	sources	and	increasingly	sophisticated	and
mission-critical	data	analyses,	a	modern	warehouse	must	instead	allow	analysts	to
easily	ingest,	digest,	produce,	and	adapt	data	rapidly.	This	requires	a	database	whose
physical	and	logical	contents	can	be	in	continuous	rapid	evolution.
Deep:	Modern	data	analyses	involve	increasingly	sophisticated	statistical	methods
that	go	well	beyond	the	rollups	and	drilldowns	of	traditional	business	intelligence
(BI).	Moreover,	analysts	often	need	to	see	both	the	forest	and	the	trees	in	running
these	algorithms;	they	want	to	study	enormous	datasets	without	resorting	to	samples
and	extracts.	The	modern	data	warehouse	should	serve	both	as	a	deep	data	repository
and	as	a	sophisticated	algorithmic	runtime	engine.

In	 response	 to	 the	 inability	 of	 a	 traditional	 EDW	 to	 readily	 accommodate	 new	 data
sources,	 the	concept	of	a	data	 lake	has	emerged.	A	data	 lake	represents	an	environment
that	collects	and	stores	large	volumes	of	structured	and	unstructured	datasets,	typically	in
their	 original,	 unaltered	 forms.	 More	 than	 a	 data	 depository,	 the	 data	 lake	 architecture
enables	the	various	users	and	data	science	teams	to	conduct	data	exploration	and	related
analytical	 activities.	Apache	Hadoop	 is	often	considered	a	key	component	of	building	a
data	lake	[4].

Because	MADlib	 is	 designed	 and	 built	 to	 accommodate	massive	 parallel	 processing	 of
data,	 MADlib	 is	 ideal	 for	 Big	 Data	 in-database	 analytics.	 MADlib	 supports	 the	 open-
source	 database	 PostgreSQL	 as	 well	 as	 the	 Pivotal	 Greenplum	 Database	 and	 Pivotal
HAWQ.	HAWQ	 is	 a	 SQL	 query	 engine	 for	 data	 stored	 in	 the	Hadoop	Distributed	 File
System	(HDFS).	Apache	Hadoop	and	the	Pivotal	products	were	described	in	Chapter	10,
“Advanced	Analytics—Technology	and	Tools:	MapReduce	and	Hadoop.”

MADlib	version	1.6	modules	[5]	are	described	in	Table	11.4.

Table	11.4	MADlib	Modules

Module Description
Generalized	Linear

Models
Includes	linear	regression,	logistic	regression,	and	multinomial

logistic	regression
Cross	Validation Evaluates	the	predictive	power	of	a	fitted	model
Linear	Systems Solves	dense	and	sparse	linear	system	problems

Matrix
Factorization

Performs	low-rank	matrix	factorization	and	singular	value
decomposition

Association	Rules Implements	the	Apriori	algorithm	to	identify	frequent	item	sets
Clustering Implements	k-means	clustering

Topic	Modeling Provides	a	Latent	Dirichlet	Allocation	predictive	model	for	a	set	of
documents

Descriptive
Statistics Simplifies	the	computation	of	summary	statistics	and	correlations

Inferential
Statistics Conducts	hypothesis	tests

Support	Modules Provides	general	array	and	probability	functions	that	can	also	be
used	by	other	MADlib	modules

Dimensionality
Reduction Enables	principal	component	analyses	and	projections

Time	Series
Analysis Conducts	ARIMA	analyses

http://doc.madlib.net/latest/modules.html

In	 the	 following	example,	MADlib	 is	used	 to	perform	a	k-means	 clustering	analysis,	 as
described	 in	Chapter	4,	“Advanced	Analytical	Theory	and	Methods:	Clustering,”	on	 the
web	retailer’s	customers.	Two	customer	attributes—age	and	total	sales	since	2013—have
been	 identified	 as	 variables	 of	 interest	 for	 the	 purposes	 of	 the	 clustering	 analysis.	 The
customer’s	age	is	available	in	the	customer_demographics	table.	The	total	sales	for	each
customer	 can	 be	 computed	 from	 the	 orders_recent	 table.	 Because	 it	 was	 decided	 to
include	customers	who	had	not	purchased	anything,	a	LEFT	OUTER	JOIN	is	used	to	include
all	customers.	The	customer’s	age	and	sales	are	stored	in	an	array	in	the	cust_age_sales
table.	The	MADlib	k-means	function	expects	the	coordinates	to	be	expressed	as	an	array.
/*	create	an	empty	table	to	store	the	input	for	the	k-means	analysis	*/

CREATE	TABLE	cust_age_sales	(

customer_id	integer,

coordinates	float8[])

/*	prepare	the	input	for	the	k-means	analysis	*/

INSERT	INTO	cust_age_sales	(customer_id,	coordinates[1],	coordinates[2])

SELECT	d.customer_id,

			d.customer_age,

			CASE

			WHEN	s.sales	IS	NULL	THEN	0.0

			ELSE	s.sales

			END

FROM	customer_demographics	d

			LEFT	OUTER	JOIN	(SELECT	r.customer_id,

							SUM(r.item_quantity	*	r.item_price)	AS	sales

							FROM	orders_recent	r

							GROUP	BY	r.customer_id)	s

			ON	d.customer_id	=	s.customer_id

/*	examine	the	first	10	rows	of	the	input	*/

SELECT	*	from	cust_age_sales

order	by	customer_id

LIMIT	10

customer_id		coordinates

1				{32,14.98}

2				{32,51.48}

3				{33,151.89}

4				{27,88.28}

http://doc.madlib.net/latest/modules.html

5				{31,4.85}

6				{26,54}

7				{29,63}

8				{25,101.07}

9				{32,41.05}

10				{32,0}

Using	 the	MADlib	 function,	 kmeans_random(),	 the	 following	 SQL	 query	 identifies	 six
clusters	within	the	provided	dataset.	A	description	of	the	key	input	values	is	provided	with
the	query.
/*

K-means	analysis

cust_age_sales	-	SQL	table	containing	the	input	data

coordinates	-	the	column	in	the	SQL	table	that	contains	the	data	points

customer_id	-	the	column	in	the	SQL	table	that	contains	the

				identifier	for	each	point

km_coord	-	the	table	to	store	each	point	and	its	assigned	cluster

km_centers	-	the	SQL	table	to	store	the	centers	of	each	cluster

l2norm	-	specifies	that	the	Euclidean	distance	formula	is	used

25	-	the	maximum	number	of	iterations

0.001	-	a	convergence	criterion

False(twice)	-	ignore	some	options

6	-	build	six	clusters

*/

SELECT	madlib.kmeans_random(‘cust_age_sales’,	‘coordinates’,

				‘customer_id’,	‘km_coord’,	‘km_centers’,

				‘l2norm’,	25	,0.001,	False,	False,	6)

SELECT	*

FROM	km_coord

ORDER	BY	pid

LIMIT	10

pid		coords				cid

1		{1,1}:{32,14.98}	6

2		{1,1}:{32,51.48}	1

3		{1,1}:{33,151.89}	4

4		{1,1}:{27,88.28}	1

5		{1,1}:{31,4.85}		6

6		{1,1}:{26,54}		1

7		{1,1}:{29,63}		1

8		{1,1}:{25,101.07}	1

9		{1,1}:{32,41.05}	1

10		{1,1}:{32,0}		6

The	 output	 consists	 of	 the	km_coord	 table.	 This	 table	 contains	 the	 coordinates	 for	 each
point	 id	 (pid),	 the	 customer_id,	 and	 the	 assigned	 cluster	 ID	 (cid).	 The	 coordinates
(coords)	are	stored	as	sparse	vectors.	Sparse	vectors	are	useful	when	values	 in	an	array
are	repeated	many	times.	For	example,	{1,200,3}:{1,0,1}	represents	the	following	vector
containing	204	elements,	{1,0,0,…0,1,1,1},	where	the	zeroes	are	repeated	200	times.

The	coordinates	for	each	cluster	center	or	centroid	are	stored	in	the	SQL	table	km_center.
SELECT	*

FROM	km_centers

ORDER	BY	coords

cid	coords

6	{1,1}:{44.1131730722154,6.31487804161302}

1	{1,1}:{39.8000419034649,61.6213603286732}

4	{1,1}:{39.2578830823738,167.758556117954}

5	{1,1}:{40.9437092852768,409.846906145043}

3	{1,1}:{42.3521947160391,1150.68858851676}

2	{1,1}:{41.2411873840445,4458.93716141001}

Because	 the	 age	 values	 are	 similar	 for	 each	 centroid,	 it	 appears	 that	 the	 sales	 values
dominated	the	distance	calculations.	After	visualizing	the	clusters,	it	is	advisable	to	repeat
the	analysis	after	rescaling,	as	discussed	in	Chapter	4.

Summary
This	chapter	presented	several	techniques	and	examples	illustrating	how	SQL	can	be	used
to	 perform	 in-database	 analytics.	 A	 typical	 SQL	 query	 involves	 joining	 several	 tables,
filtering	the	returned	dataset	to	the	desired	records	with	a	WHERE	clause,	and	specifying	the
particular	columns	of	interest.	SQL	provides	the	set	operations	of	UNION	and	UNION	ALL	to
merge	the	results	of	two	or	more	SELECT	statements	or	INTERSECT	to	find	common	record
elements.	Other	SQL	queries	can	summarize	a	dataset	using	aggregate	functions	such	as
COUNT()	and	SUM()	and	the	GROUP	BY	clause.	Grouping	extensions	such	as	 the	CUBE	and
ROLLUP	operators	enable	the	computation	of	subtotals	and	grand	totals.

Although	 SQL	 is	 most	 commonly	 associated	 with	 structured	 data,	 SQL	 tables	 often
contain	unstructured	data	such	as	comments,	descriptions,	and	other	freeform	text	content.
Regular	expressions	and	related	functions	can	be	used	in	SQL	to	examine	and	restructure
such	unstructured	data	for	further	analysis.

More	complex	SQL	queries	can	utilize	window	functions	to	supply	computed	values	such
as	 ranks	 and	 rolling	 averages	 along	 with	 an	 original	 dataset.	 In	 addition	 to	 built-in
functions,	SQL	offers	the	ability	to	create	user-defined	functions.	Although	it	is	possible	to
process	the	data	within	a	database	and	extract	the	results	into	an	analytical	tool	such	as	R,
external	 libraries	such	as	MADlib	can	be	utilized	by	SQL	to	conduct	statistical	analyses
within	a	database.

Exercises
	
1.	 Show	that	EWMA	smoothing	is	equivalent	to	an	ARIMA(0,1,1)	model	with	no

constant,	as	described	in	Chapter	8,	“Advanced	Analytical	Theory	and	Methods:
Time	Series	Analysis.”

2.	 Referring	to	Equation	(11.1),	demonstrate	that	the	assigned	weights	decay
exponentially	in	time.

3.	 Develop	and	test	a	user-defined	aggregate	to	calculate	n	factorial	(n!),	where	n	is	an
integer.

4.	 From	a	SQL	table	or	query,	randomly	select	10%	of	the	rows.	Hint:	Most	SQL
implementations	have	a	random()	function	that	provides	a	uniform	random	number
between	0	and	1.	Discuss	possible	reasons	to	randomly	sample	records	from	a	SQL
table.

Bibliography
	
1.	 [1]	PostgreSQl.org,	“Window	Functions”	[Online].	Available:

http://www.postgresql.org/docs/9.3/static/functions-window.html.
[Accessed	10	April	2014].

2.	 [2]	MADlib	,	“MADlib”	[Online].	Available:	http://madlib.net/download/.
[Accessed	10	April	2014].

3.	 [3]	J.	Cohen,	B.	Dolan,	M.	Dunlap,	J.	Hellerstein,	and	C.	Welton,	“MAD	Skills:	New
Analysis	Practices	for	Big	Data,”	in	Proceedings	of	the	VLDB	Endowment	Volume	2
Issue	2,	August	2009.

4.	 [4]	E.	Dumbill,	“The	Data	Lake	Dream,”	Forbes,	14	January	2014.	[Online].
Available:	http://www	.forbes.com/sites/edddumbill/2014/01/14/the-data-
lake-dream/	.	[Accessed	4	June	2014].

5.	 [5]	MADlib	,	“MADlib	Modules”	[Online].	Available:
http://doc.madlib.net/latest/	modules.html.	[Accessed	10	April	2014].

http://PostgreSQl.org
http://www.postgresql.org/docs/9.3/static/functions-window.html
http://madlib.net/download/
http://www .forbes.com/sites/edddumbill/2014/01/14/the-data-lake-dream/
http://doc.madlib.net/latest/ modules.html

Chapter	12
The	Endgame,	or	Putting	It	All	Together

Key	Concepts
1.	 Communicating	and	operationalizing	an	analytics	project
2.	 Creating	the	final	deliverables
3.	 Using	a	core	set	of	material	for	different	audiences
4.	 Comparing	main	focus	areas	for	sponsors	and	analysts
5.	 Understanding	simple	data	visualization	principles
6.	 Cleaning	up	a	chart	or	visualization

This	chapter	focuses	on	the	final	phase	of	the	Data	Analytics	Lifecycle:	operationalize.	In
this	phase,	the	project	team	delivers	final	reports,	code,	and	technical	documentation.	At
the	 conclusion	 of	 this	 phase,	 the	 team	 generally	 attempts	 to	 set	 up	 a	 pilot	 project	 and
implement	the	developed	models	from	Phase	4	in	a	production	environment.	As	stated	in
Chapter	2,	“Data	Analytics	Lifecycle,”	teams	can	perform	a	technically	accurate	analysis,
but	if	they	cannot	translate	the	results	into	a	language	that	resonates	with	their	audience,
others	will	not	see	the	value,	and	significant	effort	and	resources	will	have	been	wasted.
This	chapter	focuses	on	showing	how	to	construct	a	clear	narrative	summary	of	the	work
and	a	framework	for	conveying	the	narrative	to	key	stakeholders.

12.1	Communicating	and	Operationalizing	an	Analytics	Project
As	 shown	 in	 Figure	 12.1,	 the	 final	 phase	 in	 the	 Data	 Analytics	 Lifecycle	 focuses	 on
operationalizing	the	project.	In	this	phase,	teams	need	to	assess	the	benefits	of	the	project
work	and	set	up	a	pilot	 to	deploy	 the	models	 in	a	controlled	way	before	broadening	 the
work	and	 sharing	 it	with	 a	 full	 enterprise	or	 ecosystem	of	users.	 In	 this	 context,	 a	pilot
project	 can	 refer	 to	 a	 project	 prior	 to	 a	 full-scale	 rollout	 of	 the	 new	 algorithms	 or
functionality.	This	pilot	can	be	a	project	with	a	more	limited	scope	and	rollout	to	the	lines
of	business,	products,	or	services	affected	by	these	new	models.

Figure	12.1	Data	Analytics	Lifecycle,	Phase	6:	operationalize

The	 team’s	ability	 to	quantify	 the	benefits	and	share	 them	in	a	compelling	way	with	 the
stakeholders	 will	 determine	 if	 the	 work	 will	 move	 forward	 into	 a	 pilot	 project	 and
ultimately	 be	 run	 in	 a	 production	 environment.	 Therefore,	 it	 is	 critical	 to	 identify	 the
benefits	and	state	them	in	a	clear	way	in	the	final	presentations.

As	the	team	scopes	the	effort	involved	to	deploy	the	analytical	model	as	a	pilot	project,	it
also	needs	to	consider	running	the	model	in	a	production	environment	for	a	discrete	set	of
products	or	a	single	line	of	business,	which	tests	the	model	in	a	live	setting.	This	allows
the	 team	 to	 learn	 from	 the	 deployment	 and	 make	 adjustments	 before	 deploying	 the
application	or	code	more	broadly	across	the	enterprise.	This	phase	can	bring	in	a	new	set
of	 team	members—namely,	 those	 engineers	 responsible	 for	 the	 production	 environment
who	 have	 a	 new	 set	 of	 issues	 and	 concerns.	 This	 group	 is	 interested	 in	 ensuring	 that
running	 the	model	 fits	 smoothly	 into	 the	production	 environment	 and	 the	model	 can	be
integrated	 into	 downstream	 processes.	 While	 executing	 the	 model	 in	 the	 production
environment,	 the	 team	 should	 aim	 to	 detect	 input	 anomalies	 before	 they	 are	 fed	 to	 the
model,	assess	run	times,	and	gauge	competition	for	resources	with	other	processes	in	the

production	environment.

Chapter	2	 included	an	 in-depth	discussion	of	 the	Data	Analytics	Lifecycle,	 including	an
overview	of	the	deliverables	provided	in	its	final	phase,	at	which	time	it	is	advisable	for
the	 team	 to	 consider	 the	 needs	 of	 each	 of	 its	 main	 stakeholders	 and	 the	 deliverables,
illustrated	in	Figure	12.2,	to	satisfy	these	needs.

Figure	12.2	Key	outputs	from	a	successful	analytic	project

Following	 is	 a	 brief	 review	 of	 the	 key	 outputs	 for	 each	 of	 the	main	 stakeholders	 of	 an
analytics	project	and	what	they	usually	expect	at	the	conclusion	of	a	project:

	
Business	User	typically	tries	to	determine	the	benefits	and	implications	of	the
findings	to	the	business.
Project	Sponsor	typically	asks	questions	related	to	the	business	impact	of	the
project,	the	risks	and	return	on	investment	(ROI),	and	how	the	project	can	be
evangelized	within	the	organization	and	beyond.
Project	Manager	needs	to	determine	if	the	project	was	completed	on	time	and
within	budget.
Business	Intelligence	Analyst	needs	to	know	if	the	reports	and	dashboards	he
manages	will	be	impacted	and	need	to	change.
Data	Engineer	and	Database	Administrator	(DBA)	typically	need	to	share	the
code	from	the	analytical	project	and	create	technical	documents	that	describe	how	to
implement	the	code.

Data	Scientists	need	to	share	the	code	and	explain	the	model	to	their	peers,
managers,	and	other	stakeholders.

Although	 these	 seven	 roles	 represent	 many	 interests	 within	 a	 project,	 these	 interests
usually	overlap,	and	most	of	them	can	be	met	with	four	main	deliverables:

	
Presentation	for	Project	Sponsors	contains	high-level	takeaways	for	executive-
level	stakeholders,	with	a	few	key	messages	to	aid	their	decision-making	process.
Focus	on	clean,	easy	visuals	for	the	presenter	to	explain	and	for	the	viewer	to	grasp.
Presentation	for	Analysts,	which	describes	changes	to	business	processes	and
reports.	Data	scientists	reading	this	presentation	are	comfortable	with	technical
graphs	(such	as	Receiver	Operating	Characteristic	[ROC]	curves,	density	plots,	and
histograms)	and	will	be	interested	in	the	details.
Code	for	technical	people,	such	as	engineers	and	others	managing	the	production
environment
Technical	specifications	for	implementing	the	code

As	a	rule,	the	more	executive	the	audience,	the	more	succinct	the	presentation	needs	to	be
for	project	sponsors.	Ensure	that	the	presentation	gets	to	the	point	quickly	and	frames	the
results	in	terms	of	value	to	the	sponsor’s	organization.	When	presenting	to	other	audiences
with	more	quantitative	backgrounds,	focus	more	time	on	the	methodology	and	findings.	In
these	instances,	the	team	can	be	more	expansive	in	describing	the	outcomes,	methodology,
and	analytical	experiments	with	a	peer	group.	This	audience	will	be	more	interested	in	the
techniques,	especially	 if	 the	 team	developed	a	new	way	of	processing	or	analyzing	data
that	can	be	reused	in	the	future	or	applied	to	similar	problems.	In	addition,	use	imagery	or
data	 visualization	when	 possible.	 Although	 it	 may	 take	more	 time	 to	 develop	 imagery,
pictures	 are	 more	 appealing,	 easier	 to	 remember,	 and	 more	 effective	 to	 deliver	 key
messages	than	long	lists	of	bullets.

12.2	Creating	the	Final	Deliverables
After	 reviewing	 the	 list	 of	 key	 stakeholders	 for	 data	 science	 projects	 and	 main
deliverables,	this	section	focuses	on	describing	the	deliverables	in	detail.	To	illustrate	this
approach,	a	fictional	case	study	is	used	to	make	the	examples	more	specific.	Figure	12.3
describes	a	scenario	of	a	fictional	bank,	YoyoDyne	Bank,	which	would	like	to	embark	on	a
project	to	do	churn	prediction	models	of	its	customers.	Churn	rate	in	this	context	refers	to
the	 frequency	with	which	 customers	 sever	 their	 relationship	 as	 customers	 of	YoyoDyne
Bank	or	switch	to	a	competing	bank.

Figure	12.3	Synopsis	of	YoyoDyne	Bank	case	study	example

Based	on	this	 information,	 the	data	science	team	may	create	an	analytics	plan	similar	 to
Figure	12.4	during	the	project.

Figure	12.4	Analytics	plan	for	YoyoDyne	Bank	case	study

In	 addition	 to	 guiding	 the	model	 planning	 and	methodology,	 the	 analytic	 plan	 contains

components	 that	 can	 be	 used	 as	 inputs	 for	 writing	 about	 the	 scope,	 underlying
assumptions,	 modeling	 techniques,	 initial	 hypotheses,	 and	 key	 findings	 in	 the	 final
presentations.	After	spending	substantial	amounts	of	time	in	the	modeling	and	performing
in-depth	data	analysis,	it	is	critical	to	reflect	on	the	project	work	and	consider	the	context
of	the	problems	the	team	set	out	to	solve.	Review	the	work	that	was	completed	during	the
project,	and	identify	observations	about	the	model	outputs,	scoring,	and	results.	Based	on
these	observations,	begin	to	identify	the	key	messages	and	any	unexpected	insights.

In	 addition,	 it	 is	 important	 to	 tailor	 the	 project	 outputs	 to	 the	 audience.	 For	 a	 project
sponsor,	show	that	the	team	met	the	project	goals.	Focus	on	what	was	done,	what	the	team
accomplished,	what	ROI	can	be	anticipated,	and	what	business	value	can	be	realized.	Give
the	 project	 sponsor	 talking	 points	 to	 evangelize	 the	 work.	 Remember	 that	 the	 sponsor
needs	 to	 relay	 the	 story	 to	 others,	 so	make	 this	 person’s	 job	 easy,	 and	 help	 ensure	 the
message	is	accurate	by	providing	a	few	talking	points.	Find	ways	to	emphasize	ROI	and
business	 value,	 and	 mention	 whether	 the	 models	 can	 be	 deployed	 within	 performance
constraints	of	the	sponsor’s	production	environment.

In	some	organizations,	the	data	science	team	may	not	be	expected	to	make	a	full	business
case	for	future	projects	and	implementation	of	the	models.	Instead,	it	needs	to	be	able	to
provide	 guidance	 about	 the	 impact	 of	 the	 models	 to	 enable	 the	 project	 sponsor,	 or
someone	designated	by	that	person,	to	create	a	business	case	to	advocate	for	the	pilot	and
subsequent	 deployment	 of	 this	 functionality.	 In	 other	words,	 the	 data	 science	 team	 can
assist	 in	 this	 effort	 by	 putting	 the	 results	 of	 the	 modeling	 and	 data	 science	 work	 into
context	to	help	assess	the	actual	value	and	cost	of	implementing	this	work	more	broadly.

When	presenting	to	a	technical	audience	such	as	data	scientists	and	analysts,	focus	on	how
the	work	was	done.	Discuss	how	the	team	accomplished	the	goals	and	the	choices	it	made
in	selecting	models	or	analyzing	the	data.	Share	analytical	methods	and	decision-making
processes	 so	 other	 analysts	 can	 learn	 from	 them	 for	 future	 projects.	 Describe	methods,
techniques,	and	technologies	used,	as	this	technical	audience	will	be	interested	in	learning
about	 these	 details	 and	 considering	whether	 the	 approach	makes	 sense	 in	 this	 case	 and
whether	 it	can	be	extended	to	other,	similar	projects.	Plan	 to	provide	specifics	related	to
model	 accuracy	 and	 speed,	 such	 as	 how	 well	 the	 model	 will	 perform	 in	 a	 production
environment.

Ideally,	the	team	should	consider	starting	the	development	of	the	final	presentation	during
the	 project	 rather	 than	 at	 the	 end	 of	 the	 project	 as	 commonly	 occurs.	 This	 approach
ensures	that	the	team	always	has	a	version	of	the	presentation	with	working	hypotheses	to
show	stakeholders,	in	case	there	is	a	need	to	show	a	work-in-process	version	of	the	project
progress	on	short	notice.	In	fact,	many	analysts	write	the	executive	summary	at	the	outset
of	 a	 project	 and	 then	 continually	 refine	 it	 over	 time	 so	 that	 at	 the	 end	 of	 the	 project,
portions	of	 the	 final	presentation	are	 already	completed.	This	 approach	also	 reduces	 the
chance	 that	 the	 team	members	will	 forget	 key	 points	 or	 insights	 discovered	 during	 the
project.	 Finally,	 it	 reduces	 the	 amount	 of	 work	 to	 be	 done	 on	 the	 presentation	 at	 the
conclusion	of	the	project.

12.2.1	Developing	Core	Material	for	Multiple	Audiences
Because	some	of	the	components	of	the	projects	can	be	used	for	different	audiences,	it	can

be	 helpful	 to	 create	 a	 core	 set	 of	materials	 regarding	 the	 project,	which	 can	 be	 used	 to
create	presentations	for	either	a	technical	audience	or	an	executive	sponsor.

Table	12.1	depicts	the	main	components	of	the	final	presentations	for	the	project	sponsor
and	an	analyst	audience.	Notice	that	teams	can	create	a	core	set	of	materials	in	these	seven
areas,	which	can	be	used	for	the	two	presentation	audiences.	Three	areas	(Project	Goals,
Main	Findings,	 and	Model	Description),	 can	be	used	as	 is	 for	both	presentations.	Other
areas	need	additional	elaboration,	such	as	the	Approach.	Still	other	areas,	such	as	the	Key
Points,	 require	 different	 levels	 of	 detail	 for	 the	 analysts	 and	 data	 scientists	 than	 for	 the
project	sponsor.	Each	of	 these	main	components	of	 the	final	presentation	 is	discussed	 in
subsequent	sections.

Table	12.1	Comparison	of	Materials	for	Sponsor	and	Analyst	Presentations

Presentation
Component

Project	Sponsor
Presentation Analyst	Presentation

Project	Goals List	top	3–5	agreed-upon	goals.
Main	Findings Emphasize	key	messages.

Approach High-level	methodology
High-level	methodology

Relevant	details	on	modeling	techniques
and	technology

Model
Description Overview	of	the	modeling	technique

Key	Points
Supported	with

Data

Support	key	points	with
simple	charts	and

graphics	(example:	bar
charts).

Show	details	to	support	the	key	points.
Analyst-oriented	charts	and	graphs,	such

as	ROC	curves	and	histograms
Visuals	of	key	variables	and	significance

of	each

Model	Details
Omit	this	section,	or
discuss	only	at	a	high

level.

Show	the	code	or	main	logic	of	the	model,
and	include	model	type,	variables,	and

technology	used	to	execute	the	model	and
score	data.

Identify	key	variables	and	impact	of	each.
Describe	expected	model	performance	and

any	caveats.
Detailed	description	of	the	modeling

technique
Discuss	variables,	scope,	and	predictive

power.

Recommendations

Focus	on	business	impact,
including	risks	and	ROI.
Give	the	sponsor	salient

points	to	help	her
evangelize	work	within

the	organization.

Supplement	recommendations	with
implications	for	the	modeling	or	for

deploying	in	a	production	environment.

12.2.2	Project	Goals
The	Project	Goals	portion	of	 the	 final	presentation	 is	generally	 the	 same,	or	 similar,	 for
sponsors	and	for	analysts.	For	each	audience,	the	team	needs	to	reiterate	the	goals	of	the
project	to	lay	the	groundwork	for	the	solution	and	recommendations	that	are	shared	later
in	 the	 presentation.	 In	 addition,	 the	 Goals	 slide	 serves	 to	 ensure	 there	 is	 a	 shared
understanding	between	the	project	team	and	the	sponsors	and	confirm	they	are	aligned	in
moving	forward	in	the	project.	Generally,	the	goals	are	agreed	on	early	in	the	project.	It	is
good	practice	 to	write	 them	down	and	share	 them	to	ensure	 the	goals	and	objectives	are
clearly	understood	by	both	the	project	team	and	the	sponsors.

Figures	12.5	and	12.6	show	two	examples	of	slides	for	Project	Goals.	Figure	12.5	shows
three	goals	for	creating	a	predictive	model	to	anticipate	customer	churn.	The	points	on	this
version	of	the	Goals	slide	emphasize	what	needs	to	be	done,	but	not	why,	which	will	be
included	in	the	alternative.

Figure	12.5	Example	of	Project	Goals	slide	for	YoyoDyne	case	study

Figure	12.6	Example	of	Situation	&	Project	Goals	slide	for	YoyoDyne	case	study

Figure	12.6	 shows	a	variation	of	 the	previous	Project	Goals	 slide	 in	Figure	12.5.	 It	 is	 a
summary	of	the	situation	prior	to	listing	the	goals.	Keep	in	mind	that	when	delivering	final
presentations,	these	deliverables	are	shared	within	organizations,	and	the	original	context
can	be	lost,	especially	if	the	original	sponsor	leaves	the	group	or	changes	roles.	It	is	good
practice	to	briefly	recap	the	situation	prior	to	showing	the	project	goals.	Keep	in	mind	that
adding	a	situation	overview	to	the	Goals	slide	does	make	it	appear	busier.	The	team	needs
to	determine	whether	to	split	this	into	a	separate	slide	or	keep	it	together,	depending	on	the
audience	and	the	team’s	style	for	delivering	the	final	presentation.

One	method	for	writing	 the	situational	overview	in	a	succinct	way	 is	 to	summarize	 it	 in
three	bullets,	as	follows:

	
Situation:	Give	a	one-sentence	overview	of	the	situation	that	has	led	to	the	analytics
project.
Complication:	Give	a	one-sentence	overview	of	the	need	for	addressing	this	now.
Something	has	triggered	the	organization	to	decide	to	take	action	at	this	time.	For
instance,	perhaps	it	lost	100	customers	in	the	past	two	weeks	and	now	has	an
executive	mandate	to	address	an	issue,	or	perhaps	it	has	lost	five	points	of	market
share	to	its	biggest	competitor	in	the	past	three	months.	Usually,	this	sentence
represents	the	driver	for	why	a	particular	project	is	being	initiated	at	this	time,	rather
than	in	some	vague	time	in	the	future.
Implication:	Give	a	one-sentence	overview	of	the	impact	of	the	complication.	For
instance,	if	the	bank	fails	to	address	its	customer	attrition	problem,	it	stands	to	lose	its
dominant	market	position	in	three	key	markets.	Focus	on	the	business	impact	to
illustrate	the	urgency	of	doing	the	project.

12.2.3	Main	Findings

Write	a	solid	executive	summary	to	portray	the	main	findings	of	a	project.	In	many	cases,
the	summary	may	be	the	only	portion	of	the	presentation	that	hurried	managers	will	read.
For	this	reason,	it	is	imperative	to	make	the	language	clear,	concise,	and	complete.	Those
reading	the	executive	summary	should	be	able	to	grasp	the	full	story	of	the	project	and	the
key	 insights	 in	 a	 single	 slide.	 In	 addition,	 this	 is	 an	 opportunity	 to	 provide	 key	 talking
points	for	 the	executive	sponsor	to	use	to	evangelize	the	project	work	with	others	 in	the
customer’s	 organization.	Be	 sure	 to	 frame	 the	 outcomes	 of	 the	 project	 in	 terms	 of	 both
quantitative	and	qualitative	business	value.	This	is	especially	important	if	the	presentation
is	 for	 the	project	 sponsor.	The	executive	 summary	 slide	 containing	 the	main	 findings	 is
generally	the	same	for	both	sponsor	and	analyst	audiences.

Figure	 12.7	 shows	 an	 example	 of	 an	 executive	 summary	 slide	 for	 the	 YoyoDyne	 case
study.	It	is	useful	to	take	a	closer	look	at	the	parts	of	the	slide	to	make	sure	it	is	clear.	Keep
in	mind	this	is	not	the	only	format	for	conveying	the	Executive	Summary;	it	varies	based
on	 the	 author’s	 style,	 although	 many	 of	 the	 key	 components	 are	 common	 themes	 in
Executive	Summaries.

Figure	12.7	Example	of	Executive	Summary	slide	for	YoyoDyne	case	study

The	key	message	should	be	clear	and	conspicuous	at	 the	front	of	 the	slide.	It	can	be	set
apart	with	color	or	shading,	as	shown	in	Figure	12.8;	other	techniques	can	also	be	used	to
draw	attention	to	it.	The	key	message	may	become	the	single	talking	point	that	executives
or	 the	 project	 sponsor	 take	 away	 from	 the	 project	 and	 use	 to	 support	 the	 team’s
recommendation	 for	a	pilot	project,	 so	 it	needs	 to	be	 succinct	and	compelling.	To	make
this	message	as	strong	as	possible,	measure	 the	value	of	 the	work	and	quantify	 the	cost
savings,	revenue,	time	savings,	or	other	benefits	to	make	the	business	impact	concrete.

Figure	12.8	Anatomy	of	an	Executive	Summary	slide

Follow	 the	 key	 message	 with	 three	 major	 supporting	 points.	 Although	 Executive
Summary	slides	can	have	more	than	three	major	points,	going	beyond	three	ideas	makes	it
difficult	 for	 people	 to	 recall	 the	main	 points,	 so	 it	 is	 important	 to	 ensure	 that	 the	 ideas
remain	clear	and	limited	to	the	few	most	impactful	ideas	the	team	wants	the	audience	to
take	 away	 from	 the	 work	 that	 was	 done.	 If	 the	 author	 lists	 ten	 key	 points,	 messages
become	diluted,	and	the	audience	may	remember	only	one	or	two	main	points.

In	 addition,	 because	 this	 is	 an	 analytics	 project,	 be	 sure	 to	make	 one	 of	 the	 key	 points
related	 to	 if,	 and	 how	 well,	 the	 work	 will	 meet	 the	 sponsor’s	 service	 level	 agreement
(SLA)	or	expectations.	Traditionally,	the	SLA	refers	to	an	arrangement	between	someone
providing	 services,	 such	 as	 an	 information	 technology	 (IT)	 department	 or	 a	 consulting
firm,	 and	 an	 end	 user	 or	 customer.	 In	 this	 case,	 the	SLA	 refers	 to	 system	performance,
expected	uptime	of	a	 system,	and	other	constraints	 that	govern	an	agreement.	This	 term
has	 become	 less	 formal	 and	 many	 times	 conveys	 system	 performance	 or	 expectations
more	generally	related	to	performance	or	timeliness.	It	 is	in	this	sense	that	SLA	is	being
used	here.	Namely,	 in	 this	context,	SLA	refers	 to	 the	expected	performance	of	a	 system
and	 the	 intent	 that	 the	 models	 developed	 will	 not	 adversely	 impact	 the	 expected
performance	of	the	system	into	which	they	are	integrated.

Finally,	although	it’s	not	required,	it	is	often	a	good	idea	to	support	the	main	points	with	a
visual	or	graph.	Visual	imagery	serves	to	make	a	visceral	connection	and	helps	retain	the
main	message	with	the	reader.

12.2.4	Approach
In	 the	Approach	portion	of	 the	presentation,	 the	 team	needs	 to	explain	 the	methodology
pursued	 on	 the	 project.	 This	 can	 include	 interviews	 with	 domain	 experts,	 the	 groups
collaborating	within	the	organization,	and	a	few	statements	about	the	solution	developed.

The	objective	of	this	slide	is	to	ensure	the	audience	understands	the	course	of	action	that
was	pursued	well	enough	to	explain	it	to	others	within	the	organization.	The	team	should
also	include	any	additional	comments	related	to	working	assumptions	the	team	followed
as	 it	performed	 the	work,	because	 this	can	be	critical	 in	defending	why	 they	followed	a
specific	course	of	action.

When	explaining	the	solution,	the	discussion	should	remain	at	a	high	level	for	the	project
sponsors.	 If	 presenting	 to	 analysts	 or	 data	 scientists,	 provide	 additional	 detail	 about	 the
type	 of	model	 used,	 including	 the	 technology	 and	 the	 actual	 performance	 of	 the	model
during	the	tests.	Finally,	as	part	of	the	description	of	the	approach,	the	team	may	want	to
mention	 constraints	 from	 systems,	 tools,	 or	 existing	 processes	 and	 any	 implications	 for
how	these	things	may	need	to	change	with	this	project.

Figure	12.9	shows	an	example	of	how	to	describe	the	methodology	followed	during	a	data
science	project	to	a	sponsor	audience.

Figure	12.9	Example	describing	the	project	methodology	for	project	sponsors

Note	 that	 the	 third	 bullet	 describes	 the	 churn	model	 in	 general	 terms.	 Furthermore,	 the
subbullets	provide	additional	details	in	nontechnical	terms.	Compare	this	approach	to	the
variation	shown	in	Figure	12.10.

Figure	12.10	Example	describing	the	project	methodology	for	analysts	and	data	scientists

Figure	12.10	shows	a	variation	on	the	approach	and	methodology	used	in	the	data	science
project.	In	this	case,	most	of	the	language	and	description	are	the	same	as	in	the	example
for	 project	 sponsors.	 The	main	 difference	 is	 that	 this	 version	 contains	 additional	 detail
regarding	the	kind	of	model	used	and	the	way	the	model	will	score	data	quickly	to	meet
the	SLA.	These	differences	are	highlighted	in	the	boxes	shown	in	Figure	12.10.

12.2.5	Model	Description
After	describing	the	project	approach,	teams	generally	include	a	description	of	the	model
that	 was	 used.	 Figure	 12.11	 provides	 the	 model	 description	 for	 the	 Yoyodyne	 Bank
example.	Although	 the	Model	Description	slide	can	be	 the	same	for	both	audiences,	 the
interests	and	objectives	differ	for	each.	For	the	sponsor,	the	general	methodology	needs	to
be	 articulated	 without	 getting	 into	 excessive	 detail.	 Convey	 the	 basic	 methodology
followed	in	the	team’s	work	to	allow	the	sponsor	to	communicate	this	to	others	within	the
organization	and	provide	talking	points.

Figure	12.11	Example	of	a	model	description	for	a	data	science	project

Mentioning	the	scope	of	the	data	used	is	critical.	The	purpose	is	to	illustrate	thoroughness
and	exude	confidence	that	the	team	used	an	approach	that	accurately	portrays	its	problem
and	is	as	free	from	bias	as	possible.	A	key	trait	of	a	good	data	scientist	is	the	ability	to	be
skeptical	of	one’s	own	work.	This	is	an	opportunity	to	view	the	work	and	the	deliverable
critically	 and	 consider	 how	 the	 audience	 will	 receive	 the	 work.	 Try	 to	 ensure	 it	 is	 an
unbiased	view	of	the	project	and	the	results.

Assuming	 that	 the	model	will	meet	 the	agreed-upon	SLAs,	mention	 that	 the	model	will
meet	 the	 SLAs	 based	 on	 the	 performance	 of	 the	 model	 within	 the	 testing	 or	 staging
environment.	 For	 instance,	 one	may	want	 to	 indicate	 that	 the	model	 processed	 500,000
records	 in	 5	minutes	 to	 give	 stakeholders	 an	 idea	of	 the	 speed	of	 the	model	 during	 run
time.	Analysts	will	want	 to	understand	 the	details	of	 the	model,	 including	 the	decisions
made	in	constructing	the	model	and	the	scope	of	the	data	extracts	for	testing	and	training.
Be	prepared	to	explain	the	team’s	thought	process	on	this,	as	well	as	the	speed	of	running
the	model	within	the	test	environment.

12.2.6	Key	Points	Supported	with	Data
The	next	step	is	to	identify	key	points	based	on	insights	and	observations	resulting	from
the	data	and	model	scoring	results.	Find	ways	to	illustrate	the	key	points	with	charts	and
visualization	 techniques,	 using	 simpler	 charts	 for	 sponsors	 and	 more	 technical	 data
visualization	for	analysts	and	data	scientists.

Figure	12.12	shows	an	example	of	providing	supporting	detail	regarding	the	rate	of	bank
customers	who	would	churn	in	various	months.	When	developing	the	key	points,	consider
the	insights	that	will	drive	the	biggest	business	impact	and	can	be	defended	with	data.	For

project	 sponsors,	 use	 simple	 charts	 such	 as	 bar	 charts,	which	 illustrate	 data	 clearly	 and
enable	 the	audience	 to	understand	 the	value	of	 the	 insights.	This	 is	also	a	good	point	 to
foreshadow	 some	 of	 the	 team’s	 recommendations	 and	 begin	 tying	 together	 ideas	 to
demonstrate	 what	 led	 to	 the	 recommendations	 and	 why.	 In	 other	 words,	 this	 section
supplies	 the	 data	 and	 foundation	 for	 the	 recommendations	 that	 come	 later	 in	 the
presentation.	 Creating	 clear,	 compelling	 slides	 to	 show	 the	 key	 points	 makes	 the
recommendations	 more	 credible	 and	 more	 likely	 to	 be	 acted	 upon	 by	 the	 customer	 or
sponsor.

Figure	12.12	Example	of	a	presentation	of	key	points	of	a	data	science	project	shown	as	a
bar	chart

For	analyst	presentations,	use	more	granular	or	 technical	charts	and	graphs.	In	 this	case,
appropriate	 visualization	 techniques	 include	 dot	 charts,	 density	 plots,	 ROC	 curves,	 or
histograms	of	 a	data	distribution	 to	 support	 decisions	made	 in	 the	modeling	 techniques.
Basic	concepts	of	data	visualization	are	discussed	later	in	the	chapter.

12.2.7	Model	Details
Model	 details	 are	 typically	 needed	by	people	who	have	 a	more	 technical	 understanding
than	 the	 sponsors,	 such	 as	 those	 who	 will	 implement	 the	 code,	 or	 colleagues	 on	 the
analytics	team.	Project	sponsors	are	typically	less	interested	in	the	model	details;	they	are
usually	more	focused	on	 the	business	 implications	of	 the	work	rather	 than	 the	details	of
the	model.	This	portion	of	 the	presentation	needs	 to	show	the	code	or	main	 logic	of	 the
model,	including	the	model	type,	variables,	and	technology	used	to	execute	the	model	and
score	the	data.	The	model	details	segment	of	the	presentation	should	focus	on	describing
expected	 model	 performance	 and	 any	 caveats	 related	 to	 the	 model	 performance.	 In
addition,	 this	 portion	 of	 the	 presentation	 should	 provide	 a	 detailed	 description	 of	 the
modeling	technique,	variables,	scope,	and	expected	effectiveness	of	the	model.

This	 is	where	 the	 team	can	provide	discussion	or	written	details	 related	 to	 the	variables
used	in	the	model	and	explain	how	or	why	these	variables	were	selected.	In	addition,	the
team	should	share	the	actual	code	(or	at	least	an	excerpt)	developed	to	explain	what	was
created	and	how	it	operates.	This	also	serves	to	foster	discussion	related	to	any	additional
constraints	or	implications	related	to	the	main	logic	of	the	code.	In	addition,	the	team	can

use	 this	 section	 to	 illustrate	details	of	 the	key	variables	 and	 the	predictive	power	of	 the
model,	 using	 analyst-oriented	 charts	 and	graphs,	 such	 as	 histograms,	dot	 charts,	 density
plots,	and	ROC	curves.

Figure	 12.13	 provides	 a	 sample	 slide	 describing	 the	 data	 variables,	 and	 Figure	 12.14
shows	a	sample	slide	with	a	technical	graph	to	support	the	work.

Figure	12.13	Example	of	model	details	showing	model	type	and	variables

Figure	12.14	Model	details	comparing	two	data	variables

As	part	of	the	model	detail	description,	guidance	should	be	provided	regarding	the	speed
with	which	the	model	can	run	in	the	test	environment;	the	expected	performance	in	a	live,
production	 environment;	 and	 the	 technology	 needed.	 This	 kind	 of	 discussion	 addresses
how	well	the	model	can	meet	the	organization’s	SLA.

This	 section	 of	 the	 presentation	 needs	 to	 include	 additional	 caveats,	 assumptions,	 or
constraints	of	the	model	and	model	performance,	such	as	systems	or	data	the	model	needs
to	 interact	 with,	 performance	 issues,	 and	 ways	 to	 feed	 the	 outputs	 of	 the	 model	 into
existing	business	processes.	The	author	of	this	section	needs	to	describe	the	relationships
of	 the	main	 variables	 on	 the	 project	 objectives,	 such	 as	 the	 effects	 of	 key	 variables	 on
predicting	churn,	and	 the	relationship	of	key	variables	 to	other	variables.	The	 team	may
even	want	 to	make	suggestions	 to	 improve	 the	model,	highlight	any	risks	 to	 introducing
bias	into	the	modeling	technique,	or	describe	certain	segments	of	the	data	that	may	skew
the	overall	predictive	power	of	the	methodology.

12.2.8	Recommendations
The	final	main	component	of	the	presentation	involves	creating	a	set	of	recommendations
that	include	how	to	deploy	the	model	from	a	business	perspective	within	the	organization
and	 any	 other	 suggestions	 on	 the	 rollout	 of	 the	model’s	 logic.	 For	 the	Yoyodyne	Bank
example,	 Figure	 12.15	 provides	 possible	 recommendations	 from	 the	 project.	 In	 this
section	of	the	presentation,	measuring	the	impact	of	the	improvements	and	stating	how	to
leverage	 that	 impact	within	 the	 recommendations	are	key.	For	 instance,	 the	presentation
might	mention	that	every	customer	retained	represents	a	time	savings	of	six	hours	for	one
of	the	bank’s	account	managers	or	$50,000	in	savings	of	new	account	acquisitions,	due	to
marketing	costs,	sales,	and	system-related	costs.

Figure	12.15	Sample	recommendations	for	a	data	science	project

For	 a	 presentation	 to	 a	 project	 sponsor	 audience,	 focus	 on	 the	 business	 impact	 of	 the
project,	including	risks	and	ROI.	Because	project	sponsors	will	be	most	interested	in	the
business	 impact	 of	 the	 project,	 the	 presentation	 should	 also	 provide	 the	 sponsor	 with
salient	 points	 to	 help	 evangelize	 the	 work	 within	 the	 organization.	 When	 preparing	 a
presentation	 for	 analysts,	 supplement	 the	 main	 set	 of	 recommendations	 with	 any
implications	 for	 the	modeling	 or	 for	 deployment	 in	 a	 production	 environment.	 In	 either
case,	the	team	should	focus	on	recommending	actions	to	operationalize	the	work	and	the
benefits	the	customer	will	receive	because	of	implementing	these	recommendations.

12.2.9	Additional	Tips	on	the	Final	Presentation
As	a	team	completes	a	project	and	strives	to	move	on	to	the	next	one,	it	must	remember	to
invest	adequate	 time	 in	developing	 the	final	presentations.	Orienting	 the	audience	 to	 the
project	 and	 providing	 context	 is	 important.	On	 occasion,	 a	 team	 is	 so	 immersed	 in	 the
project	that	it	fails	to	provide	sufficient	context	for	its	recommendations	and	the	outputs	of
the	models.	A	team	needs	to	remember	to	spell	out	terminology	and	acronyms	and	avoid
excessive	 use	 of	 jargon.	 It	 should	 also	 keep	 in	 mind	 that	 presentations	 may	 be	 shared
extensively;	therefore,	recipients	may	not	be	familiar	with	the	context	and	the	journey	the
team	has	gone	through	over	the	course	of	the	project.

The	 story	may	 need	 to	 be	 told	multiple	 times	 to	 different	 audiences,	 so	 the	 team	must
remain	 patient	 in	 repeating	 some	 of	 the	 key	 messages.	 These	 presentations	 should	 be
viewed	as	opportunities	to	refine	the	key	messages	and	evangelize	the	good	work	that	was
done.	 By	 this	 point	 in	 the	 process,	 the	 team	 has	 invested	 many	 hours	 of	 work	 and
uncovered	 insights	 for	 the	 business.	 These	 presentations	 are	 an	 opportunity	 to
communicate	 these	 projects	 and	 build	 support	 for	 future	 projects.	 As	 with	 most
presentations,	it	is	important	to	gauge	the	audience	to	guide	shaping	the	message	and	the
level	of	detail.	Here	are	several	more	tips	on	developing	the	presentations.

	
Use	imagery	and	visual	representations:	Visuals	tend	to	make	the	presentation
more	compelling.	Also,	people	recall	imagery	better	than	words,	because	images	can
have	a	more	visceral	impact.	These	visual	representations	can	be	static	and
interactive	data.
Make	sure	the	text	is	mutually	exclusive	and	collectively	exhaustive	(MECE):
This	means	having	an	economy	of	words	in	the	presentation	and	making	sure	the	key
points	are	covered	but	not	repeated	unnecessarily.
Measure	and	quantify	the	benefits	of	the	project:	This	can	be	challenging	and
requires	time	and	effort	to	do	well.	This	kind	of	measurement	should	attempt	to
quantify	benefits	that	have	financial	and	other	benefits	in	a	specific	way.	Making	the
statement	that	a	project	provided	“$8.5M	in	annual	cost	savings”	is	much	more
compelling	than	saying	it	has	“great	value.”
Make	the	benefits	of	the	project	clear	and	conspicuous:	After	calculating	the
benefits	of	the	project,	make	sure	to	articulate	them	clearly	in	the	presentation.

12.2.10	Providing	Technical	Specifications	and	Code

In	addition	to	authoring	the	final	presentations,	the	team	needs	to	deliver	the	actual	code
that	was	developed	and	the	technical	documentation	needed	to	support	it.	The	team	should
consider	how	the	project	will	affect	the	end	users	and	the	technical	people	who	will	need
to	implement	the	code.	It	is	recommended	that	the	team	think	through	the	implications	of
its	work	 on	 the	 recipients	 of	 the	 code,	 the	 kinds	 of	 questions	 they	will	 have,	 and	 their
interests.	For	instance,	indicating	that	the	model	will	need	to	perform	real-time	monitoring
may	 require	 extensive	 changes	 to	 an	 IT	 runtime	 environment,	 so	 the	 team	may	need	 to
consider	a	compromise	of	nightly	batch	jobs	to	process	the	data.	In	addition,	the	team	may
need	 to	 get	 the	 technical	 team	 talking	 with	 the	 project	 sponsor	 to	 ensure	 the
implementation	and	SLA	will	meet	the	business	needs	during	the	technical	deployment.

The	team	should	anticipate	questions	from	IT	related	to	how	computationally	expensive	it
will	be	to	run	the	model	in	the	production	environment.	If	possible,	indicate	how	well	the
model	 ran	 in	 the	 test	scenarios	and	whether	 there	are	opportunities	 to	 tune	 the	model	or
environment	to	optimize	performance	in	the	production	environment.

Teams	 should	 approach	writing	 technical	 documentation	 for	 their	 code	 as	 if	 it	 were	 an
application	programming	 interface	 (API).	Many	 times,	 the	models	become	encapsulated
as	 functions	 that	 read	 a	 set	 of	 inputs	 in	 the	 production	 environment,	 possibly	 perform
preprocessing	on	data,	and	create	an	output,	including	a	set	of	post-processing	results.

Consider	the	inputs,	outputs,	and	other	system	constraints	to	enable	a	technical	person	to
implement	the	analytical	model,	even	if	 this	person	has	not	had	a	connection	to	the	data
science	project	up	to	this	point.	Think	about	the	documentation	as	a	way	to	introduce	the
data	 that	 the	model	 needs,	 the	 logic	 it	 is	 using,	 and	 how	 other	 related	 systems	 need	 to
interact	with	it	in	a	production	environment	for	it	to	operate	well.	The	specifications	detail
the	inputs	the	code	needs	and	the	data	format	and	structures.	For	instance,	it	may	be	useful
to	 specify	 whether	 structured	 data	 is	 needed	 or	 whether	 the	 expected	 data	 needs	 to	 be
numeric	or	string	formats.	Describe	any	transformations	that	need	to	be	made	on	the	input
data	before	the	code	can	use	it,	and	if	scripting	was	created	to	perform	these	tasks.	These
kinds	 of	 details	 are	 important	 when	 other	 engineers	 must	 modify	 the	 code	 or	 utilize	 a
different	dataset	or	table,	if	and	when	the	environment	changes.

Regarding	exception	handling,	 the	 team	must	consider	how	the	code	should	handle	data
that	 is	outside	 the	expected	data	 ranges	of	 the	model	parameters	and	how	 it	will	handle
missing	data	values	(Chapter	3,	“Review	of	Basic	Data	Analytic	Methods	Using	R”),	null
values,	 zeros,	 NAs,	 or	 data	 that	 is	 in	 an	 unexpected	 format	 or	 type.	 The	 technical
documentation	describes	how	to	treat	these	exceptions	and	what	implications	may	emerge
on	downstream	processes.	For	the	model	outputs,	the	team	must	explain	to	what	extent	to
post-process	 the	 output.	 For	 example,	 if	 the	 model	 returns	 a	 value	 representing	 the
probability	 of	 customer	 churn,	 additional	 logic	 may	 be	 needed	 to	 identify	 the	 scoring
threshold	 to	 determine	 which	 customer	 accounts	 to	 flag	 as	 being	 at	 risk	 of	 churn.	 In
addition,	 some	 provision	 should	 be	 made	 for	 adjusting	 this	 threshold	 and	 training	 the
algorithm,	either	in	an	automated	learning	fashion	or	with	human	intervention.

Although	the	team	must	create	technical	documentation,	many	times	engineers	and	other
technical	 staff	 receive	 the	 code	 and	 may	 try	 to	 use	 it	 without	 reading	 through	 all	 the
documentation.	 Therefore,	 it	 is	 important	 to	 add	 extensive	 comments	 in	 the	 code.	 This
directs	 the	 people	 implementing	 the	 code	on	how	 to	 use	 it,	 explains	what	 pieces	 of	 the

logic	are	supposed	to	do,	and	guides	other	people	through	the	code	until	they’re	familiar
with	it.	If	the	team	can	do	a	thorough	job	adding	comments	in	the	code,	it	is	much	easier
for	someone	else	to	maintain	the	code	and	tune	it	in	the	runtime	environment.	In	addition,
it	 helps	 the	 engineers	 edit	 the	 code	 when	 their	 environment	 changes	 or	 they	 need	 to
modify	processes	that	may	be	providing	inputs	to	the	code	or	receiving	its	outputs.

12.3	Data	Visualization	Basics
As	 the	 volume	 of	 data	 continues	 to	 increase,	 more	 vendors	 and	 communities	 are
developing	 tools	 to	 create	 clear	 and	 impactful	 graphics	 for	 use	 in	 presentations	 and
applications.	Although	not	exhaustive,	Table	12.2	lists	some	popular	tools.

Table	12.2	Common	Tools	for	Data	Visualization

Open	Source Commercial	Tools
R	(Base	package,	lattice,	ggplot2) Tableau

GGobi/Rggobi Spotfire	(TIBCO)
Gnuplot QlikView
Inkscape Adobe	Illustrator

Modest	Maps
OpenLayers
Processing
D3.js
Weave

As	 the	 volume	 and	 complexity	 of	 data	 has	 grown,	 users	 have	 become	more	 reliant	 on
using	crisp	visuals	to	illustrate	key	ideas	and	portray	rich	data	in	a	simple	way.	Over	time,
the	 open	 source	 community	 has	 developed	 many	 libraries	 to	 offer	 more	 options	 for
portraying	 graphics	 data	 visually.	Although	 this	 book	 showed	 examples	 primarily	 using
the	 base	 package	 of	 R,	 ggplot2	 provides	 additional	 options	 for	 creating	 professional-
looking	data	visualization,	as	does	the	lattice	library	for	R.

Gnuplot	 and	 GGobi	 have	 a	 command-line-driven	 approach	 to	 generating	 data
visualization.	The	genesis	of	these	tools	mainly	grew	out	of	scientific	computing	and	the
need	to	express	complex	data	visually.	GGobi	also	has	a	variant	called	Rggobi	that	enables
users	to	access	the	GGobi	functionality	with	the	R	software	and	programming	language.
There	 are	 many	 open	 source	 mapping	 tools	 available,	 including	 Modest	 Maps	 and
OpenLayers,	both	designed	for	developers	who	would	like	to	create	interactive	maps	and
embed	 them	 within	 their	 own	 development	 projects	 or	 on	 the	 web.	 The	 software
programming	 language	 development	 environment,	 Processing,	 employs	 a	 Java-like
language	 for	 developers	 to	 create	 professional-looking	 data	 visualization.	 Because	 it	 is
based	 on	 a	 programming	 language	 rather	 than	 a	GUI,	 Processing	 enables	 developers	 to
create	robust	visualization	and	have	precise	control	over	the	output.	D3.js	is	a	JavaScript
library	for	manipulating	data	and	creating	web-based	visualization	with	standards,	such	as
Hypertext	Markup	Language	 (HTML),	Scalable	Vector	Graphics	 (SVG),	 and	Cascading
Style	Sheets	(CSS).	For	more	examples	of	using	open	source	visualization	tools,	refer	to
Nathan	 Yau’s	 website,	 flowingdata.com	 [1],	 or	 his	 book	 Visualize	 This	 [2],	 which
discusses	additional	methods	for	creating	data	representations	with	open	source	tools.

Regarding	the	commercial	tools	shown	in	Table	12.2,	Tableau,	Spotfire	(by	TIBCO),	and
QlikView	function	as	data	visualization	tools	and	as	interactive	business	intelligence	(BI)
tools.	Due	to	the	growth	of	data	in	the	past	few	years,	organizations	for	the	first	time	are

http://flowingdata.com

beginning	 to	 place	 more	 emphasis	 on	 ease	 of	 use	 and	 visualization	 in	 BI	 over	 more
traditional	 BI	 tools	 and	 databases.	 These	 tools	 make	 visualization	 easy	 and	 have	 user
interfaces	 that	are	cleaner	and	simpler	 to	navigate	 than	 their	predecessors.	Although	not
traditionally	considered	a	data	visualization	tool,	Adobe	Illustrator	is	listed	in	Table	12.2
because	 some	 professionals	 use	 it	 to	 enhance	 visualization	 made	 in	 other	 tools.	 For
example,	some	users	develop	a	simple	data	visualization	in	R,	save	the	image	as	a	PDF	or
JPEG,	and	then	use	a	tool	such	as	Illustrator	to	enhance	the	quality	of	the	graphic	or	stitch
multiple	visualization	work	into	an	infographic.	Inkscape	is	an	open	source	tool	used	for
similar	use	cases,	with	much	of	Illustrator’s	functionality.

12.3.1	Key	Points	Supported	with	Data
It	is	more	difficult	to	observe	key	insights	when	data	is	in	tables	instead	of	in	charts.	To
underscore	this	point,	in	Say	it	with	Charts,	Gene	Zelazny	[3]	mentions	that	to	highlight
data,	 it	 is	best	 to	create	a	visual	 representation	out	of	 it,	such	as	a	chart,	graph,	or	other
data	visualization.	The	opposite	is	also	true.	Suppose	an	analyst	chooses	to	downplay	the
data.	Sharing	it	in	a	table	draws	less	attention	to	it	and	makes	it	more	difficult	for	people
to	digest.

The	 way	 one	 chooses	 to	 organize	 the	 visual	 in	 terms	 of	 the	 color	 scheme,	 labels,	 and
sequence	 of	 information	 also	 influences	 how	 the	 viewer	 processes	 the	 information	 and
what	he	perceives	 as	 the	key	message	 from	 the	 chart.	The	 table	 shown	 in	Figure	12.16
contains	many	data	points.	Given	 the	 layout	of	 the	 information,	 it	 is	difficult	 to	 identify
the	key	points	at	a	glance.	Looking	at	45	years	of	store	opening	data	can	be	challenging,	as
shown	in	Figure	12.16.

Figure	12.16	Forty-five	years	of	store	opening	data

Even	showing	somewhat	less	data	is	still	difficult	to	read	through	for	most	people.	Figure
12.17	hides	the	first	10	years,	leaving	35	years	of	data	in	the	table.

Figure	12.17	Thirty-five	years	of	store	opening	data

As	most	 readers	will	observe,	 it	 is	challenging	 to	make	sense	of	data,	even	at	 relatively
small	scales.	There	are	several	observations	in	the	data	that	one	may	notice,	if	one	looks
closely	at	the	data	tables:

	
BigBox	experienced	strong	growth	in	the	1980s	and	1990s.
By	the	1980s,	BigBox	began	adding	more	SuperBox	stores	to	its	mix	of	chain	stores.
SuperBox	stores	outnumber	BigBox	stores	nearly	2	to	1	in	aggregate.

Depending	 on	 the	 point	 trying	 to	 be	 made,	 the	 analyst	 must	 take	 care	 to	 organize	 the

information	in	a	way	that	intuitively	enables	the	viewer	to	take	away	the	same	main	point
that	the	author	intended.	If	the	analyst	fails	to	do	this	effectively,	the	person	consuming	the
data	must	guess	at	 the	main	point	and	may	 interpret	something	different	 from	what	was
intended.

Figure	 12.18	 shows	 a	 map	 of	 the	 United	 States,	 with	 the	 points	 representing	 the
geographic	locations	of	the	stores.	This	map	is	a	more	powerful	way	to	depict	data	than	a
small	table	would	be.	The	approach	is	well	suited	to	a	sponsor	audience.	This	map	shows
where	the	BigBox	store	has	market	saturation,	where	the	company	has	grown,	and	where
it	 has	 SuperBox	 stores	 and	 other	 BigBox	 stores,	 based	 on	 the	 color	 and	 shading.	 The
visualization	in	Figure	12.18	clearly	communicates	more	effectively	than	the	dense	tables
in	Figure	12.16	and	Figure	12.17.	For	a	sponsor	audience,	the	analytics	team	can	also	use
other	simple	visualization	techniques	to	portray	data,	such	as	bar	charts	or	line	charts.

Figure	12.18	Forty-five	years	of	store	opening	data,	shown	as	map

12.3.2	Evolution	of	a	Graph
Visualization	allows	people	to	portray	data	in	a	more	compelling	way	than	tables	of	data
and	 in	 a	 way	 that	 can	 be	 understood	 on	 an	 intuitive,	 precognitive	 level.	 In	 addition,
analysts	 and	 data	 scientists	 can	 use	 visualization	 to	 interact	 with	 and	 explore	 data.
Following	is	an	example	of	the	steps	a	data	scientist	may	go	through	in	exploring	pricing
data	to	understand	the	data	better,	model	it,	and	assess	whether	a	current	pricing	model	is
working	 effectively.	 Figure	 12.19	 shows	 a	 distribution	 of	 pricing	 data	 as	 a	 user	 score
reflecting	price	sensitivity.

Figure	12.19	Frequency	distribution	of	user	scores

A	data	 scientist’s	 first	 step	may	be	 to	view	 the	data	 as	 a	 raw	distribution	of	 the	pricing
levels	of	users.	Because	the	values	have	a	long	tail	to	the	right,	in	Figure	12.19,	it	may	be
difficult	to	get	a	sense	of	how	tightly	clustered	the	data	is	between	user	scores	of	zero	and
five.

To	 understand	 this	 better,	 a	 data	 scientist	 may	 rerun	 this	 distribution	 showing	 a	 log
distribution	(Chapter	3)	of	the	user	score,	as	demonstrated	in	Figure	12.20.

Figure	12.20	Frequency	distribution	with	log	of	user	score

This	shows	a	less	skewed	distribution	that	may	be	easier	for	a	data	scientist	to	understand.
Figure	 12.21	 illustrates	 a	 rescaled	 view	 of	 Figure	 12.20,	 with	 the	 median	 of	 the
distribution	around	2.0.	This	plot	provides	the	distribution	of	a	new	user	score,	or	index,
that	may	gauge	the	level	of	price	sensitivity	of	a	user	when	expressed	in	log	form.

Figure	12.21	Frequency	distribution	of	new	user	scores

Another	idea	may	be	to	analyze	the	stability	of	price	distributions	over	time	to	see	if	the
prices	offered	 to	customers	are	 stable	or	volatile.	As	 shown	 in	a	graphic	 such	as	Figure
12.22,	 the	prices	 appear	 to	be	 stable.	 In	 this	 example,	 the	user	 score	of	pricing	 remains
within	a	tight	band	between	two	and	three	regardless	of	the	time	in	days.	In	other	words,
the	 time	in	which	a	customer	purchases	a	given	product	does	not	significantly	 influence
the	price	she	is	willing	to	pay,	as	expressed	by	the	user	score,	shown	on	the	y-axis.

Figure	12.22	Graph	of	stability	analysis	for	pricing

By	 this	 point	 the	 data	 scientist	 has	 learned	 the	 following	 about	 this	 example	 and	made
several	observations	about	the	data:

	
Most	user	scores	are	between	two	and	three	in	terms	of	their	price	sensitivity.
After	taking	the	log	value	of	the	user	scores,	a	new	user	scoring	index	was	created,
which	recentered	the	data	values	around	the	center	of	the	distribution.
The	pricing	scores	appear	to	be	stable	over	time,	as	the	duration	of	the	customer	does
not	seem	to	have	significant	influence	on	the	user	pricing	score.	Instead,	it	appears	to
be	relatively	constant	over	time,	within	a	small	band	of	user	scores.

At	 this	 point,	 the	 analysts	 may	 want	 to	 explore	 the	 range	 of	 price	 tiers	 offered	 to
customers.	Figures	12.22	and	12.23	demonstrate	examples	of	the	price	tiering	currently	in
place	within	the	customer	base.

Figure	12.23	Graph	comparing	the	price	in	U.S.	dollars	with	a	customer	loyalty	score

Figure	12.23	 shows	 the	 price	 distribution	 for	 a	 customer	 base.	 In	 this	 example,	 loyalty
score	and	price	are	positively	correlated;	as	 the	 loyalty	score	 increases,	 so	do	 the	prices
that	the	customers	are	willing	to	pay.	It	may	seem	like	a	strange	phenomenon	that	the	most
loyal	 customers	 in	 this	 example	 are	willing	 to	 pay	 higher	 prices,	 but	 the	 reality	 is	 that
customers	who	are	very	 loyal	 tend	 to	be	 less	sensitive	 to	price	 fluctuations	or	 increases.
The	key,	however,	 is	 to	understand	which	customers	are	highly	loyal	so	 that	appropriate
pricing	can	be	charged	to	the	right	groups	of	people.

Figure	12.24	shows	a	variation	on	12-23.	In	this	case,	the	new	graphic	portrays	the	same
customer	price	tiers,	but	this	time	a	rug	representation	(Chapter	3)	has	been	added	at	the
bottom	to	reflect	the	distribution	of	the	data	points.

Figure	12.24	Graph	comparing	the	price	in	U.S.	dollars	with	a	customer	loyalty	score
(with	rug	representation)

This	 rug	 indicates	 that	 the	majority	 of	 customers	 in	 this	 example	 are	 in	 a	 tight	 band	of
loyalty	scores,	between	about	1	and	3	on	the	x-axis,	all	of	which	offered	the	same	set	of
prices,	which	are	high	(between	0.9	and	1.0	on	the	y-axis).	The	y-axis	in	this	example	may
represent	 a	 pricing	 score,	 or	 the	 raw	 value	 of	 a	 customer	 in	 millions	 of	 dollars.	 The
important	aspect	is	to	recognize	that	the	pricing	is	high	and	is	offered	consistently	to	most
of	the	customers	in	this	example.

Based	on	what	was	shown	in	Figure	12.25,	the	team	may	decide	to	develop	a	new	pricing
model.	Rather	than	offering	static	prices	to	customers	regardless	of	their	level	of	loyalty,	a
new	 pricing	 model	 might	 offer	 more	 dynamic	 price	 points	 to	 customers.	 In	 this
visualization,	the	data	shows	the	price	increases	as	more	of	a	curvilinear	slope	relative	to
the	 customer	 loyalty	 score.	 The	 rug	 at	 the	 bottom	 of	 the	 graph	 indicates	 that	 most
customers	 remain	between	1	and	3	on	 the	x-axis,	but	now	 rather	 than	offering	all	 these
customers	 the	 same	 price,	 the	 proposal	 suggests	 offering	 progressively	 higher	 prices	 as
customer	 loyalty	 increases.	 In	 one	 sense,	 this	 may	 seem	 counterintuitive.	 It	 could	 be
argued	 that	 the	 best	 prices	 should	 be	 offered	 to	 the	most	 loyal	 customers.	However,	 in
reality,	the	opposite	is	often	the	case,	with	the	most	attractive	prices	being	offered	to	the
least	loyal	customers.	The	rationale	is	that	loyal	customers	are	less	price	sensitive	and	may
enjoy	 the	 product	 and	 stay	with	 it	 regardless	 of	 small	 fluctuations	 in	 price.	Conversely,
customers	who	are	not	very	loyal	may	defect	unless	they	are	offered	more	attractive	prices
to	stay.	In	other	words,	less	loyal	customers	are	more	price	sensitive.	To	address	this	issue,
a	 new	 pricing	 model	 that	 accounts	 for	 this	 may	 enable	 an	 organization	 to	 maximize
revenue	 and	 minimize	 attrition	 by	 offering	 higher	 prices	 to	 more	 loyal	 customers	 and
lower	 prices	 to	 less	 loyal	 customers.	 Creating	 an	 iterative	 depicting	 the	 data	 visually
allows	the	viewer	to	see	these	changes	in	a	more	concrete	way	than	by	looking	at	tables	of

numbers	or	raw	values.

Figure	12.25	New	proposed	pricing	model	compared	to	prices	in	U.S.	dollars	with	rug

Data	scientists	typically	iterate	and	view	data	in	many	different	ways,	framing	hypotheses,
testing	them,	and	exploring	the	implications	of	a	given	model.	This	case	explores	visual
examples	of	pricing	distributions,	fluctuations	in	pricing,	and	the	differences	in	price	tiers
before	 and	 after	 implementing	 a	 new	model	 to	 optimize	 price.	 The	 visualization	 work
illustrates	 how	 the	 data	may	 look	 as	 the	 result	 of	 the	model,	 and	 helps	 a	 data	 scientist
understand	the	relationships	within	the	data	at	a	glance.

The	 resulting	 graph	 in	 the	 pricing	 scenario	 appears	 to	 be	 technical	 regarding	 the
distribution	 of	 prices	 throughout	 a	 customer	 base	 and	would	 be	 suitable	 for	 a	 technical
audience	composed	of	other	data	scientists.	Figure	12.26	shows	an	example	of	how	one
may	 present	 this	 graphic	 to	 an	 audience	 of	 other	 data	 scientists	 or	 data	 analysts.	 This
demonstrates	 a	 curvilinear	 relationship	 between	 price	 tiers	 and	 customer	 loyalty	 when
expressed	 as	 an	 index.	 Note	 that	 the	 comments	 to	 the	 right	 of	 the	 graph	 relate	 to	 the
precision	of	the	price	targeting,	the	amount	of	variability	in	robustness	of	the	model,	and
the	expectations	of	model	speed	when	run	in	a	production	environment.

Figure	12.26	Evolution	of	a	graph,	analyst	example	with	supporting	points

Figure	12.27	portrays	another	example	of	 the	output	 from	the	price	optimization	project
scenario,	 showing	 how	 one	 may	 present	 this	 to	 an	 audience	 of	 project	 sponsors.	 This
demonstrates	a	simple	bar	chart	depicting	the	average	price	per	customer	or	user	segment.
Figure	12.27	shows	a	much	simpler-looking	visual	 than	Figure	12.26.	 It	clearly	portrays
that	 customers	with	 lower	 loyalty	 scores	 tend	 to	 get	 lower	 prices	 due	 to	 targeting	 from
price	promotions.	Note	that	the	right	side	of	the	image	focuses	on	the	business	impact	and
cost	savings	rather	than	the	detailed	characteristics	of	the	model.

Figure	12.27	Evolution	of	a	graph,	sponsor	example

The	comments	 to	 the	right	side	of	 the	graphic	 in	Figure	12.27	explain	 the	 impact	of	 the
model	 at	 a	 high	 level	 and	 the	 cost	 savings	 of	 implementing	 this	 approach	 to	 price
optimization.

12.3.3	Common	Representation	Methods

Although	there	are	many	types	of	data	visualizations,	several	fundamental	types	of	charts
portray	data	and	information.	It	is	important	to	know	when	to	use	a	particular	type	of	chart
or	graph	to	express	a	given	kind	of	data.	Table	12.3	shows	some	basic	chart	types	to	guide
the	 reader	 in	 understanding	 that	 different	 types	 of	 charts	 are	more	 suited	 to	 a	 situation
depending	 on	 specific	 kinds	 of	 data	 and	 the	message	 the	 team	 is	 attempting	 to	 portray.
Using	a	type	of	chart	for	data	it	is	not	designed	for	may	look	interesting	or	unusual,	but	it
generally	 confuses	 the	 viewer.	The	 objective	 for	 the	 author	 is	 to	 find	 the	 best	 chart	 for
expressing	the	data	clearly	so	the	visual	does	not	impede	the	message,	but	rather	supports
the	reader	in	taking	away	the	intended	message.

Table	12.3	Common	Representation	Methods	for	Data	and	Charts

Data	for	Visualization Type	of	Chart
Components	(parts	of	whole) Pie	chart

Item Bar	chart
Time	series Line	chart
Frequency Line	chart	or	histogram
Correlation Scatterplot,	side-by-side	bar	charts

Table	12.3	shows	the	most	fundamental	and	common	data	representations,	which	can	be
combined,	embellished,	and	made	more	sophisticated	depending	on	the	situation	and	the
audience.	 It	 is	 recommended	 that	 the	 team	 consider	 the	 message	 it	 is	 trying	 to
communicate	and	then	select	the	appropriate	type	of	visual	to	support	the	point.	Misusing
charts	 tends	 to	confuse	an	audience,	so	 it	 is	 important	 to	 take	 into	account	 the	data	 type
and	desired	message	when	choosing	a	chart.

Pie	charts	are	designed	to	show	the	components,	or	parts	relative	to	a	whole	set	of	things.
A	 pie	 chart	 is	 also	 the	most	 commonly	misused	 kind	 of	 chart.	 If	 the	 situation	 calls	 for
using	a	pie	chart,	employ	 it	only	when	showing	only	2–3	 items	 in	a	chart,	and	only	 for
sponsor	audiences.

Bar	 charts	 and	 line	 charts	 are	 used	 much	 more	 often	 and	 are	 useful	 for	 showing
comparisons	and	trends	over	time.	Even	though	people	use	vertical	bar	charts	more	often,
horizontal	bar	charts	allow	an	author	more	room	to	fit	 the	text	labels.	Vertical	bar	charts
tend	to	work	well	when	the	labels	are	small,	such	as	when	showing	comparisons	over	time
using	years.

For	 frequency,	 histograms	 are	 useful	 for	 demonstrating	 the	 distribution	 of	 data	 to	 an
analyst	 audience	 or	 to	 data	 scientists.	 As	 shown	 in	 the	 pricing	 example	 earlier	 in	 this
chapter,	 data	 distributions	 are	 typically	 one	 of	 the	 first	 steps	 when	 visualizing	 data	 to
prepare	 for	 model	 planning.	 To	 qualitatively	 evaluate	 correlations,	 scatterplots	 can	 be
useful	to	compare	relationships	among	variables.

As	with	any	presentation,	consider	the	audience	and	level	of	sophistication	when	selecting
the	chart	to	convey	the	intended	message.	These	charts	are	simple	examples	but	can	easily
become	more	complex	when	adding	data	variables,	combining	charts,	or	adding	animation
where	appropriate.

12.3.4	How	to	Clean	Up	a	Graphic
Many	times	software	packages	generate	a	graphic	for	a	dataset,	but	the	software	adds	too
many	 things	 to	 the	graphic.	These	 added	visual	distractions	 can	make	 the	visual	 appear
busy	or	otherwise	obscure	the	main	points	that	are	to	be	made	with	the	graphic.	In	general,
it	 is	a	best	practice	to	strive	for	simplicity	when	creating	graphics	and	data	visualization
graphs.	 Knowing	 how	 to	 simplify	 graphics	 or	 clean	 up	 a	 messy	 chart	 is	 helpful	 for
conveying	the	key	message	as	clearly	as	possible.	Figure	12.28	portrays	a	line	chart	with
several	design	problems.

Figure	12.28	How	to	clean	up	a	graphic,	example	1	(before)

How	to	Clean	Up	a	Graphic

The	line	chart	shown	in	Figure	12.28	compares	two	trends	over	time.	The	chart	looks	busy
and	contains	 a	 lot	of	 chart	 junk	 that	distracts	 the	viewer	 from	 the	main	message.	Chart
junk	 refers	 to	elements	of	data	visualization	 that	provide	additional	materials	but	do	not
contribute	to	the	data	portion	of	the	graphic.	If	chart	junk	were	removed,	the	meaning	and
understanding	of	the	graphic	would	not	be	diminished;	it	would	instead	be	made	clearer.
There	are	five	main	kinds	of	“chart	junk”	in	Figure	12.28:

	
Horizontal	grid	lines:	These	serve	no	purpose	in	this	graphic.	They	do	not	provide
additional	information	for	the	chart.
Chunky	data	points:	These	data	points	represented	as	large	square	blocks	draw	the
viewer’s	attention	to	them	but	do	not	represent	any	specific	meaning	aside	from	the
data	points	themselves.
Overuse	of	emphasis	colors	in	the	lines	and	border:	The	border	of	the	graphic	is	a
thick,	bold	line.	This	forces	the	viewer’s	attention	to	the	perimeter	of	the	graphic,
which	contains	no	information	value.	In	addition,	the	lines	showing	the	trends	are

relatively	thick.
No	context	or	labels:	The	chart	contains	no	legend	to	provide	context	as	to	what	is
being	shown.	The	lines	also	lack	labels	to	explain	what	they	represent.
Crowded	axis	labels:	There	are	too	many	axis	labels,	so	they	appear	crowded.	There
is	no	need	for	labels	on	the	y-axis	to	appear	every	five	units	or	for	values	on	the	x-
axis	to	appear	every	two	units.	Shown	in	this	way,	the	axis	labels	distract	the	viewer
from	the	actual	data	that	is	represented	by	the	trend	lines	in	the	chart.

The	 five	 forms	 of	 chart	 junk	 in	 Figure	 12.28	 are	 easily	 corrected,	 as	 shown	 in	 Figure
12.29.	 Note	 that	 there	 is	 no	 clear	 message	 associated	 with	 the	 chart	 and	 no	 legend	 to
provide	context	for	what	is	shown	in	Figure	12.28.

Figure	12.29	How	to	clean	up	a	graphic,	example	1	(after)

Figures	12.29	and	12.30	portray	two	examples	of	cleaned-up	versions	of	the	chart	shown
in	Figure	12.28.	Note	 that	 the	problems	with	chart	 junk	have	been	addressed.	There	 is	a
clear	 label	 and	 title	 for	 each	chart	 to	 reinforce	 the	message,	 and	color	has	been	used	 in
ways	to	highlight	the	point	the	author	is	trying	to	make.	In	Figure	12.29,	a	strong,	green
color	 is	 shown	 to	 represent	 the	 count	 of	 SuperBox	 stores,	 because	 this	 is	 where	 the
viewer’s	focus	should	be	drawn,	whereas	the	count	of	BigBox	stores	is	shown	in	a	light
gray	color.

Figure	12.30	How	to	clean	up	a	graphic,	example	1	(alternate	“after”	view)

In	addition,	note	the	amount	of	white	space	being	used	in	each	of	the	two	charts	shown	in
Figures	12.29	and	12.30.	Removing	grid	lines,	excessive	axes,	and	the	visual	noise	within
the	chart	allows	clear	contrast	between	the	emphasis	colors	(the	green	line	charts)	and	the
standard	colors	(the	lighter	gray	of	the	BigBox	stores).	When	creating	charts,	it	is	best	to
draw	 most	 of	 the	 main	 visuals	 in	 standard	 colors,	 light	 tones,	 or	 color	 shades	 so	 that
stronger	emphasis	colors	can	highlight	the	main	points.	In	this	case,	the	trend	of	BigBox
stores	 in	 light	gray	 fades	 into	 the	background	but	does	not	disappear,	while	making	 the
SuperBox	 stores	 trend	 in	 a	 darker	 gray	 (bright	 green	 in	 the	 online	 chart)	 makes	 it
prominent	to	support	the	message	the	author	is	making	about	the	growth	of	the	SuperBox
stores.

An	alternative	to	Figure	12.29	is	shown	in	Figure	12.30.	If	 the	main	message	is	 to	show
the	difference	in	the	growth	of	new	stores,	Figure	12.30	can	be	created	to	further	simplify
Figure	12.28	and	graph	only	the	difference	between	SuperBox	stores	compared	to	regular
BigBox	 stores.	 Two	 examples	 are	 shown	 to	 illustrate	 different	 ways	 to	 convey	 the
message,	depending	on	what	it	is	the	author	of	these	charts	would	like	to	emphasize.

How	to	Clean	Up	a	Graphic,	Second	Example

Another	 example	 of	 cleaning	 up	 a	 chart	 is	 portrayed	 in	 Figure	 12.31.	 This	 vertical	 bar
chart	suffers	from	more	of	the	typical	problems	related	to	chart	junk,	including	misuse	of
color	schemes	and	lack	of	context.

Figure	12.31	How	to	clean	up	a	graphic,	example	2	(before)

There	are	five	main	kinds	of	chart	junk	in	Figure	12.31:

	
Vertical	grid	lines:	These	vertical	grid	lines	are	not	needed	in	this	graphic.	They
provide	no	additional	information	to	help	the	viewer	understand	the	message	in	the
data.	Instead,	these	vertical	grid	lines	only	distract	the	viewer	from	looking	at	the
data.
Too	much	emphasis	color:	This	bar	chart	uses	strong	colors	and	too	much	high-
contrast	dark	grayscale.	In	general,	it	is	best	to	use	subtle	tones,	with	a	low	contrast
gray	as	neutral	color,	and	then	emphasize	the	data	underscoring	the	key	message	in	a
dark	tone	or	strong	color.
No	chart	title:	Because	the	graphic	lacks	a	chart	title,	the	viewer	is	not	oriented	to
what	he	is	viewing	and	does	not	have	proper	context.
Legend	at	right	restricting	chart	space:	Although	there	is	a	legend	for	the	chart,	it
is	shown	on	the	right	side,	which	causes	the	vertical	bar	chart	to	be	compressed
horizontally.	The	legend	would	make	more	sense	placed	across	the	top,	above	the
chart,	where	it	would	not	interfere	with	the	data	being	expressed.
Small	labels:	The	horizontal	and	vertical	axis	labels	have	appropriate	spacing,	but
the	font	size	is	too	small	to	be	easily	read.	These	should	be	slightly	larger	to	be	easily
read,	while	not	appearing	too	prominent.

Figures	12.32	and	12.33	portray	two	examples	of	cleaned-up	versions	of	the	chart	shown
in	Figure	12.31.	The	problems	with	chart	junk	have	been	addressed.	There	is	a	clear	label
and	title	for	each	chart	to	reinforce	the	message,	and	appropriate	colors	have	been	used	in

ways	to	highlight	the	point	the	author	is	trying	to	make.	Figures	12.32	and	12.33	show	two
options	for	modifying	the	graphic,	depending	on	the	main	point	the	presenter	is	trying	to
make.

Figure	12.32	How	to	clean	up	a	graphic,	example	2	(after)

Figure	12.33	How	to	clean	up	a	graphic,	example	2	(alternate	view	of	“after”)

Figure	12.32	shows	strong	emphasis	color	(dark	blue)	representing	the	SuperBox	stores	to
support	the	chart	title:	Growth	of	SuperBox	Stores.

Suppose	the	presenter	wanted	to	talk	about	 the	total	growth	of	BigBox	stores	instead.	A
line	 chart	 showing	 the	 trends	 over	 time	 would	 be	 a	 better	 choice,	 as	 shown	 in	 Figure
12.33.

In	both	cases,	the	noise	and	distractions	within	the	chart	have	been	removed.	As	a	result,
the	data	in	the	bar	chart	for	providing	context	has	been	deemphasized,	while	other	data	has
been	made	more	prominent	because	it	reinforces	the	key	point	as	stated	in	the	chart’s	title.

12.3.5	Additional	Considerations
As	stated	 in	 the	previous	examples,	 the	emphasis	should	be	on	simplicity	when	creating
charts	 and	 graphs.	 Create	 graphics	 that	 are	 free	 of	 chart	 junk	 and	 utilize	 the	 simplest
method	for	portraying	graphics	clearly.	The	goal	of	data	visualization	should	be	to	support
the	key	messages	being	made	as	clearly	as	possible	and	with	few	distractions.

Similar	to	the	idea	of	removing	chart	junk	is	being	cognizant	of	the	data-ink	ratio.	Data-
ink	 refers	 to	 the	 actual	 portion	 of	 a	 graphic	 that	 portrays	 the	 data,	while	non-data	 ink
refers	 to	 labels,	 edges,	 colors,	 and	other	decoration.	 If	one	 imagined	 the	 ink	 required	 to
print	 a	 data	 visualization	 on	 paper,	 the	 data-ink	 ratio	 could	 be	 thought	 of	 as	 (data-
ink)/(total	ink	used	to	print	the	graphic).	In	other	words,	the	greater	the	ratio	of	data-ink	in
the	visual,	the	more	data	rich	it	is	and	the	fewer	distractions	it	has	[4].

Avoid	Using	Three-Dimensions	in	Most	Graphics

One	more	example	where	people	typically	err	is	in	adding	unnecessary	shading,	depth,	or
dimensions	 to	 graphics.	 Figure	 12.34	 shows	 a	 vertical	 bar	 chart	 with	 two	 visible
dimensions.	This	example	is	simple	and	easy	to	understand,	and	the	focus	is	on	the	data,
not	the	graphics.	The	author	of	the	chart	has	chosen	to	highlight	the	SuperBox	stores	in	a
dark	blue	color,	while	the	BigBox	bars	in	the	chart	are	in	a	lighter	blue.	The	title	is	about
the	growth	of	SuperBox	 stores,	 and	 the	SuperBox	bars	 in	 the	 chart	 are	 in	 a	dark,	 high-
contrast	shade	that	draws	the	viewer’s	attention	to	them.

Figure	12.34	Simple	bar	chart,	with	two	dimensions

Compare	 Figure	 12.34	 to	 Figure	 12.35,	 which	 shows	 a	 three-dimensional	 chart.	 Figure
12.35	shows	the	original	bar	chart	at	an	angle,	with	some	attempt	at	showing	depth.	This
kind	of	three-dimensional	perspective	makes	it	more	difficult	for	the	viewer	to	gauge	the
actual	 data	 and	 the	 scaling	 becomes	 deceptive.	 Three-dimensional	 charts	 often	 distort
scales	 and	 axes,	 and	 impede	 viewer	 cognition.	 Adding	 a	 third	 dimension	 for	 depth	 in
Figure	12.35,	does	not	make	it	fancier,	just	more	difficult	to	understand.

Figure	12.35	Misleading	bar	chart,	with	three	dimensions

The	charts	 in	Figures	12.34	 and	12.35	 portray	 the	 same	 data,	 but	 it	 is	more	 difficult	 to
judge	the	actual	height	of	the	bars	in	Figure	12.35.	Moreover,	the	shadowing	and	shape	of
the	chart	cause	most	viewers	to	spend	time	looking	at	the	perspective	of	the	chart	rather
than	 the	 height	 of	 the	 bars,	 which	 is	 the	 key	 message	 and	 purpose	 of	 this	 data
visualization.

Summary
Communicating	the	value	of	analytical	projects	is	critical	for	sustaining	the	momentum	of
a	project	and	building	support	within	organizations.	This	support	is	instrumental	in	turning
a	 successful	 project	 into	 a	 system	 or	 integrating	 it	 properly	 into	 an	 existing	 production
environment.	 Because	 an	 analytics	 project	may	 need	 to	 be	 communicated	 to	 audiences
with	mixed	 backgrounds,	 this	 chapter	 recommends	 creating	 four	 deliverables	 to	 satisfy
most	of	the	needs	of	various	stakeholders.

	
A	presentation	for	a	project	sponsor
A	presentation	for	an	analytical	audience
Technical	specification	documents
Well-annotated	production	code

Creating	 these	 deliverables	 enables	 the	 analytics	 project	 team	 to	 communicate	 and
evangelize	the	work	that	it	did,	whereas	the	code	and	technical	documentation	assists	the
team	that	wants	to	implement	the	models	within	the	production	environment.

This	chapter	illustrates	the	importance	of	selecting	clear	and	simple	visual	representations
to	 support	 the	 key	 points	 in	 the	 final	 presentations	 or	 for	 portraying	 data.	 Most	 data
representations	and	graphs	can	be	 improved	by	 simply	 removing	 the	visual	distractions.
This	means	minimizing	or	removing	chart	junk,	which	distracts	the	viewer	from	the	main
purpose	 of	 a	 chart	 or	 graph	 and	 does	 not	 add	 information	 value.	 Following	 several
common-sense	 principles	 about	 minimizing	 distractions	 in	 slides	 and	 visualizations,
communicating	 clearly	 and	 simply,	 using	 color	 in	 a	 deliberate	 way,	 and	 taking	 time	 to
provide	context	addresses	most	of	the	common	problems	in	charts	and	slides.	These	few
guidelines	support	the	creation	of	crisp,	clear	visuals	that	convey	the	key	messages.

In	most	cases,	the	best	data	visualizations	use	the	simplest,	clearest	visual	to	illustrate	the
key	point.	Avoid	unnecessary	embellishment	and	focus	on	trying	to	find	the	best,	simplest
method	for	transmitting	the	message.	Context	is	critical	to	orient	the	viewer	to	a	chart	or
graph,	 because	 people	 have	 immediate	 reactions	 to	 imagery	 on	 a	 precognitive	 level.	To
this	end,	make	sure	to	employ	thoughtful	use	of	color	and	orient	 the	viewer	with	scales,
legends,	and	axes.

Exercises
	
1.	 Describe	four	common	deliverables	for	an	analytics	project.
2.	 What	is	the	focus	of	a	presentation	for	a	project	sponsor?
3.	 Give	examples	of	appropriate	charts	to	create	in	a	presentation	for	other	data	analysts

and	data	scientists	as	part	of	a	final	presentation.	Explain	why	the	charts	are
appropriate	to	show	each	audience.

4.	 Explain	what	types	of	graphs	would	be	appropriate	to	show	data	changing	over	time
and	why.

5.	 As	part	of	operationalizing	an	analytics	project,	which	deliverable	would	you	expect
to	provide	to	a	Business	Intelligence	analyst?

References	and	Further	Reading
Following	 are	 additional	 references	 to	 learn	 more	 about	 best	 practices	 for	 giving
presentations.

	
Say	It	with	Charts,	by	Gene	Zelazny[3]:	Simple	reference	book	on	how	to	select
the	right	graphical	approach	for	portraying	data	and	for	ensuring	the	message	is
clearly	conveyed	in	presentations.
Pyramid	Principle,	by	Barbara	Minto	[5]:	Minto	pioneered	the	approach	for
constructing	logical	structures	for	presentations	in	threes:	three	sections	to	the
presentations,	each	with	three	main	points.	This	teaches	people	how	to	weave	a	story
out	of	the	disparate	pieces.
Presentation	Zen,	by	Garr	Reynolds	[6]:	Teaches	how	to	convey	ideas	simply	and
clearly	and	use	imagery	in	presentations.	Shows	many	before	and	after	versions	of
graphics	and	slides.
Now	You	See	It,	by	Stephen	Few	[4]:	Provides	many	examples	for	matching	the
appropriate	kind	of	data	visualization	to	a	given	dataset.

Bibliography
	
1.	 [1]	N.	Yau,	“flowingdata.com”	[Online].	Available:	http://flowingdata.com.

2.	 [2]	N.	Yau,	Visualize	This,	Indianapolis:	Wiley,	2011.

3.	 [3]	G.	Zelazny,	Say	It	with	Charts:	The	Executive’s	Guide	to	Visual	Communication,
McGraw-Hill,	2001.

4.	 [4]	S.	Few,	Now	You	See	It:	Simple	Visualization	Techniques	for	Quantitative
Analysis,	Analytics	Press,	2009.

5.	 [5]	B.	Minto,	The	Minto	Pyramid	Principle:	Logic	in	Writing,	Thinking,	and	Problem
Solving,	Prentice	Hall,	2010.

6.	 [6]	G.	Reynolds,	Presentation	Zen:	Simple	Ideas	on	Presentation	Design	and
Delivery,	Berkeley:	New	Riders,	2011.

http://flowingdata.com
http://flowingdata.com

Data	Science	&	Big	Data	Analytics
Discovering,	Analyzing,	Visualizing	and	Presenting	Data
EMC	Education	Services

	

Data	Science	&	Big	Data	Analytics:	Discovering,	Analyzing,	Visualizing	and	Presenting	Data

Published	by
John	Wiley	&	Sons,	Inc.
10475	Crosspoint	Boulevard
Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2015	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-118-87613-8
ISBN:	978-1-118-87622-0	(ebk)	ISBN:	978-1-118-87605-3	(ebk)

Manufactured	in	the	United	States	of	America

10	9	8	7	6	5	4	3	2	1

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization
through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	 (978)	 750-8400,	 fax	 (978)	 646-8600.	 Requests	 to	 the	 Publisher	 for	 permission	 should	 be	 addressed	 to	 the
Permissions	Department,	 John	Wiley	&	Sons,	 Inc.,	 111	River	Street,	Hoboken,	NJ	07030,	 (201)	748-6011,	 fax	 (201)
748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	 of	 Liability/Disclaimer	 of	Warranty:	 The	 publisher	 and	 the	 author	make	 no	 representations	 or	warranties	with
respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifically	disclaim	all	warranties,	including
without	 limitation	warranties	of	 fitness	 for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	 with	 the	 understanding	 that	 the	 publisher	 is	 not	 engaged	 in	 rendering	 legal,	 accounting,	 or	 other	 professional
services.	If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.	Neither
the	publisher	nor	 the	author	shall	be	 liable	for	damages	arising	herefrom.	The	fact	 that	an	organization	or	Web	site	 is
referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	website	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	websites	listed	in	this	work	may	have	changed	or	disappeared	between	when	this
work	was	written	and	when	it	is	read.

For	general	 information	on	our	other	products	 and	 services	please	 contact	our	Customer	Care	Department	within	 the
United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	 publishes	 in	 a	 variety	 of	 print	 and	 electronic	 formats	 and	 by	 print-on-demand.	 Some	 material	 included	 with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media
such	 as	 a	 CD	 or	 DVD	 that	 is	 not	 included	 in	 the	 version	 you	 purchased,	 you	 may	 download	 this	 material	 at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2014946681

Trademarks:	Wiley	and	the	Wiley	logo	are	 trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	 its
affliates,	in	the	United	States	and	other	countries,	and	may	not	be	used	without	written	permission.	All	other	trademarks
are	 the	 property	 of	 their	 respective	 owners.	 John	Wiley	 &	 Sons,	 Inc.	 is	 not	 associated	 with	 any	 product	 or	 vendor
mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Credits
Executive	Editor

Carol	Long

Project	Editor

Kelly	Talbot

Production	Manager

Kathleen	Wisor

Copy	Editor

Karen	Gill

Manager	of	Content	Development	and	Assembly

Mary	Beth	Wakefield

Marketing	Director

David	Mayhew

Marketing	Manager

Carrie	Sherrill

Professional	Technology	and	Strategy	Director

Barry	Pruett

Business	Manager

Amy	Knies

Associate	Publisher

Jim	Minatel

Project	Coordinator,	Cover

Patrick	Redmond

Proofreader

Nancy	Carrasco

Indexer

Johnna	VanHoose	Dinse

Cover	Designer

Mallesh	Gurram

About	the	Key	Contributors

David	Dietrich	heads	 the	data	 science	education	 team	within	EMC	Education	Services,
where	 he	 leads	 the	 curriculum,	 strategy	 and	 course	 development	 related	 to	 Big	 Data
Analytics	 and	 Data	 Science.	 He	 co-authored	 the	 first	 course	 in	 EMC’s	 Data	 Science
curriculum,	two	additional	EMC	courses	focused	on	teaching	leaders	and	executives	about
Big	Data	 and	data	 science,	 and	 is	 a	 contributing	author	 and	editor	of	 this	book.	He	has
filed	14	patents	in	the	areas	of	data	science,	data	privacy,	and	cloud	computing.

David	has	been	an	advisor	to	several	universities	looking	to	develop	academic	programs
related	 to	 data	 analytics,	 and	 has	 been	 a	 frequent	 speaker	 at	 conferences	 and	 industry
events.	He	also	has	been	a	a	guest	lecturer	at	universities	in	the	Boston	area.	His	work	has
been	featured	in	major	publications	including	Forbes,	Harvard	Business	Review,	and	the
2014	Massachusetts	Big	Data	Report,	commissioned	by	Governor	Deval	Patrick.

Involved	with	analytics	and	technology	for	nearly	20	years,	David	has	worked	with	many
Fortune	 500	 companies	 over	 his	 career,	 holding	 multiple	 roles	 involving	 analytics,
including	 managing	 analytics	 and	 operations	 teams,	 delivering	 analytic	 consulting
engagements,	 managing	 a	 line	 of	 analytical	 software	 products	 for	 regulating	 the	 US
banking	 industry,	 and	 developing	 Software-as-a-Service	 and	 BI-as-a-Service	 offerings.
Additionally,	David	collaborated	with	 the	U.S.	Federal	Reserve	 in	developing	predictive
models	for	monitoring	mortgage	portfolios.

Barry	Heller	 is	an	advisory	 technical	education	consultant	at	EMC	Education	Services.
Barry	 is	a	course	developer	and	curriculum	advisor	 in	 the	emerging	 technology	areas	of
Big	 Data	 and	 data	 science.	 Prior	 to	 his	 current	 role,	 Barry	 was	 a	 consultant	 research
scientist	leading	numerous	analytical	initiatives	within	EMC’s	Total	Customer	Experience
organization.	 Early	 in	 his	 EMC	 career,	 he	managed	 the	 statistical	 engineering	 group	 as
well	 as	 led	 the	 data	 warehousing	 efforts	 in	 an	 Enterprise	 Resource	 Planning	 (ERP)
implementation.	 Prior	 to	 joining	 EMC,	 Barry	 held	 managerial	 and	 analytical	 roles	 in
reliability	engineering	functions	at	medical	diagnostic	and	technology	companies.	During
his	career,	he	has	applied	his	quantitative	skill	set	to	a	myriad	of	business	applications	in
the	Customer	Service,	Engineering,	Manufacturing,	Sales/Marketing,	Finance,	and	Legal
arenas.	Underscoring	 the	 importance	of	 strong	executive	 stakeholder	 engagement,	many
of	 his	 successes	 have	 resulted	 from	 not	 only	 focusing	 on	 the	 technical	 details	 of	 an
analysis,	but	on	the	decisions	that	will	be	resulting	from	the	analysis.	Barry	earned	a	B.S.
in	Computational	Mathematics	from	the	Rochester	Institute	of	Technology	and	an	M.A.	in
Mathematics	from	the	State	University	of	New	York	(SUNY)	New	Paltz.

Beibei	Yang	is	a	Technical	Education	Consultant	of	EMC	Education	Services,	responsible
for	 developing	 several	 open	 courses	 at	 EMC	 related	 to	 Data	 Science	 and	 Big	 Data
Analytics.	 Beibei	 has	 seven	 years	 of	 experience	 in	 the	 IT	 industry.	 Prior	 to	 EMC	 she
worked	as	a	software	engineer,	systems	manager,	and	network	manager	for	a	Fortune	500
company	 where	 she	 introduced	 new	 technologies	 to	 improve	 efficiency	 and	 encourage
collaboration.	 Beibei	 has	 published	 papers	 to	 prestigious	 conferences	 and	 has	 filed
multiple	 patents.	 She	 received	 her	 Ph.D.	 in	 computer	 science	 from	 the	 University	 of
Massachusetts	 Lowell.	 She	 has	 a	 passion	 toward	 natural	 language	 processing	 and	 data
mining,	 especially	 using	 various	 tools	 and	 techniques	 to	 find	 hidden	 patterns	 and	 tell
stories	with	data.

Data	Science	and	Big	Data	Analytics	is	an	exciting	domain	where	the	potential	of	digital
information	is	maximized	for	making	intelligent	business	decisions.	We	believe	that	this	is
an	area	that	will	attract	a	lot	of	talented	students	and	professionals	in	the	short,	mid,	and
long	term.

Acknowledgments
EMC	Education	Services	embarked	on	learning	this	subject	with	the	intent	to	develop	an
“open”	curriculum	and	certification.	It	was	a	challenging	journey	at	the	time	as	not	many
understood	 what	 it	 would	 take	 to	 be	 a	 true	 data	 scientist.	 After	 initial	 research	 (and
struggle),	we	were	able	to	define	what	was	needed	and	attract	very	talented	professionals
to	work	on	the	project.	The	course,	“Data	Science	and	Big	Data	Analytics,”	has	become
well	accepted	across	academia	and	the	industry.

Led	by	EMC	Education	Services,	this	book	is	the	result	of	efforts	and	contributions	from	a
number	 of	 key	EMC	organizations	 and	 supported	 by	 the	 office	 of	 the	CTO,	 IT,	Global
Services,	 and	 Engineering.	 Many	 sincere	 thanks	 to	 many	 key	 contributors	 and	 subject
matter	experts	David	Dietrich,	Barry	Heller,	and	Beibei	Yang	for	their	work	developing
content	 and	 graphics	 for	 the	 chapters.	 A	 special	 thanks	 to	 subject	 matter	 experts	 John
Cardente	and	Ganesh	Rajaratnam	for	their	active	involvement	reviewing	multiple	book
chapters	and	providing	valuable	feedback	throughout	the	project.

We	are	also	grateful	 to	 the	following	experts	from	EMC	and	Pivotal	for	 their	support	 in
reviewing	and	improving	the	content	in	this	book:

Aidan	O’Brien Joe	Kambourakis
Alexander	Nunes Joe	Milardo
Bryan	Miletich John	Sopka
Dan	Baskette Kathryn	Stiles
Daniel	Mepham Ken	Taylor
Dave	Reiner Lanette	Wells

Deborah	Stokes Michael	Hancock
Ellis	Kriesberg Michael	Vander	Donk
Frank	Coleman Narayanan	Krishnakumar
Hisham	Arafat Richard	Moore
Ira	Schild Ron	Glick

Jack	Harwood Stephen	Maloney
Jim	McGroddy Steve	Todd
Jody	Goncalves Suresh	Thankappan

Joe	Dery Tom	McGowan

We	 also	 thank	 Ira	 Schild	 and	 Shane	 Goodrich	 for	 coordinating	 this	 project,	 Mallesh
Gurram	 for	 the	 cover	 design,	 Chris	 Conroy	 and	 Rob	 Bradley	 for	 graphics,	 and	 the
publisher,	John	Wiley	and	Sons,	for	timely	support	in	bringing	this	book	to	the	industry.

Nancy	Gessler
Director,	Education	Services,	EMC	Corporation

Alok	Shrivastava
Sr.	Director,	Education	Services,	EMC	Corporation

Foreword
Technological	advances	and	the	associated	changes	in	practical	daily	life	have	produced	a
rapidly	 expanding	 “parallel	 universe”	 of	 new	 content,	 new	 data,	 and	 new	 information
sources	all	around	us.	Regardless	of	how	one	defines	it,	 the	phenomenon	of	Big	Data	is
ever	 more	 present,	 ever	 more	 pervasive,	 and	 ever	 more	 important.	 There	 is	 enormous
value	potential	in	Big	Data:	innovative	insights,	improved	understanding	of	problems,	and
countless	 opportunities	 to	 predict—and	 even	 to	 shape—the	 future.	 Data	 Science	 is	 the
principal	means	 to	 discover	 and	 tap	 that	 potential.	 Data	 Science	 provides	ways	 to	 deal
with	 and	 benefit	 from	Big	Data:	 to	 see	 patterns,	 to	 discover	 relationships,	 and	 to	make
sense	of	stunningly	varied	images	and	information.

Not	everyone	has	studied	statistical	analysis	at	a	deep	level.	People	with	advanced	degrees
in	applied	mathematics	are	not	a	commodity.	Relatively	few	organizations	have	committed
resources	 to	 large	 collections	 of	 data	 gathered	 primarily	 for	 the	 purpose	 of	 exploratory
analysis.	And	yet,	while	applying	the	practices	of	Data	Science	to	Big	Data	is	a	valuable
differentiating	 strategy	 at	 present,	 it	 will	 be	 a	 standard	 core	 competency	 in	 the	 not	 so
distant	future.

How	does	an	organization	operationalize	quickly	to	 take	advantage	of	 this	 trend?	We’ve
created	this	book	for	that	exact	purpose.

EMC	Education	Services	has	been	listening	 to	 the	 industry	and	organizations,	observing
the	multi-faceted	transformation	of	the	technology	landscape,	and	doing	direct	research	in
order	 to	 create	 curriculum	 and	 content	 to	 help	 individuals	 and	 organizations	 transform
themselves.	 For	 the	 domain	 of	 Data	 Science	 and	 Big	 Data	 Analytics,	 our	 educational
strategy	 balances	 three	 things:	 people—especially	 in	 the	 context	 of	 data	 science	 teams,
processes—such	as	 the	analytic	 lifecycle	approach	presented	 in	 this	book,	and	 tools	and
technologies—in	this	case	with	the	emphasis	on	proven	analytic	tools.

So	let	us	help	you	capitalize	on	this	new	“parallel	universe”	that	surrounds	us.	We	invite
you	 to	 learn	 about	Data	 Science	 and	Big	Data	Analytics	 through	 this	 book	 and	 hope	 it
significantly	accelerates	your	efforts	in	the	transformational	process.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

Table	of	Contents
Introduction

EMC	Academic	Alliance
EMC	Proven	Professional	Certification

Chapter	1:	Introduction	to	Big	Data	Analytics

1.1	Big	Data	Overview
1.2	State	of	the	Practice	in	Analytics
1.3	Key	Roles	for	the	New	Big	Data	Ecosystem
1.4	Examples	of	Big	Data	Analytics
Summary
Exercises
Bibliography

Chapter	2:	Data	Analytics	Lifecycle

2.1	Data	Analytics	Lifecycle	Overview
2.2	Phase	1:	Discovery
2.3	Phase	2:	Data	Preparation
2.4	Phase	3:	Model	Planning
2.5	Phase	4:	Model	Building
2.6	Phase	5:	Communicate	Results
2.7	Phase	6:	Operationalize
2.8	Case	Study:	Global	Innovation	Network	and	Analysis	(GINA)
Summary
Exercises
Bibliography

Chapter	3:	Review	of	Basic	Data	Analytic	Methods	Using	R

3.1	Introduction	to	R
3.2	Exploratory	Data	Analysis
3.3	Statistical	Methods	for	Evaluation
Summary
Exercises
Bibliography

Chapter	4:	Advanced	Analytical	Theory	and	Methods:	Clustering

4.1	Overview	of	Clustering
4.2	K-means
4.3	Additional	Algorithms
Summary
Exercises
Bibliography

Chapter	5:	Advanced	Analytical	Theory	and	Methods:	Association	Rules

5.1	Overview

5.2	Apriori	Algorithm
5.3	Evaluation	of	Candidate	Rules
5.4	Applications	of	Association	Rules
5.5	An	Example:	Transactions	in	a	Grocery	Store
5.6	Validation	and	Testing
5.7	Diagnostics
Summary
Exercises
Bibliography

Chapter	6:	Advanced	Analytical	Theory	and	Methods:	Regression

6.1	Linear	Regression
6.2	Logistic	Regression
6.3	Reasons	to	Choose	and	Cautions
6.4	Additional	Regression	Models
Summary
Exercises

Chapter	7:	Advanced	Analytical	Theory	and	Methods:	Classification

7.1	Decision	Trees
7.2	Naïve	Bayes
7.3	Diagnostics	of	Classifiers
7.4	Additional	Classification	Methods
Summary
Exercises
Bibliography

Chapter	8:	Advanced	Analytical	Theory	and	Methods:	Time	Series	Analysis

8.1	Overview	of	Time	Series	Analysis
8.2	ARIMA	Model
8.3	Additional	Methods
Summary
Exercises

Chapter	9:	Advanced	Analytical	Theory	and	Methods:	Text	Analysis

9.1	Text	Analysis	Steps
9.2	A	Text	Analysis	Example
9.3	Collecting	Raw	Text
9.4	Representing	Text
9.5	Term	Frequency—Inverse	Document	Frequency	(TFIDF)
9.6	Categorizing	Documents	by	Topics
9.7	Determining	Sentiments
9.8	Gaining	Insights
Summary
Exercises
Bibliography

Chapter	10:	Advanced	Analytics—Technology	and	Tools:	MapReduce	and	Hadoop

10.1	Analytics	for	Unstructured	Data
10.2	The	Hadoop	Ecosystem
10.3	NoSQL
Summary
Exercises
Bibliography

Chapter	11:	Advanced	Analytics—Technology	and	Tools:	In-Database	Analytics

11.1	SQL	Essentials
11.2	In-Database	Text	Analysis
11.3	Advanced	SQL
Summary
Exercises
Bibliography

Chapter	12:	The	Endgame,	or	Putting	It	All	Together

12.1	Communicating	and	Operationalizing	an	Analytics	Project
12.2	Creating	the	Final	Deliverables
12.3	Data	Visualization	Basics
Summary
Exercises
References	and	Further	Reading
Bibliography

End	User	License	Agreement

	Introduction
	EMC Academic Alliance
	EMC Proven Professional Certification

	Chapter 1: Introduction to Big Data Analytics
	1.1 Big Data Overview
	1.2 State of the Practice in Analytics
	1.3 Key Roles for the New Big Data Ecosystem
	1.4 Examples of Big Data Analytics
	Summary
	Exercises
	Bibliography

	Chapter 2: Data Analytics Lifecycle
	2.1 Data Analytics Lifecycle Overview
	2.2 Phase 1: Discovery
	2.3 Phase 2: Data Preparation
	2.4 Phase 3: Model Planning
	2.5 Phase 4: Model Building
	2.6 Phase 5: Communicate Results
	2.7 Phase 6: Operationalize
	2.8 Case Study: Global Innovation Network and Analysis (GINA)
	Summary
	Exercises
	Bibliography

	Chapter 3: Review of Basic Data Analytic Methods Using R
	3.1 Introduction to R
	3.2 Exploratory Data Analysis
	3.3 Statistical Methods for Evaluation
	Summary
	Exercises
	Bibliography

	Chapter 4: Advanced Analytical Theory and Methods: Clustering
	4.1 Overview of Clustering
	4.2 K-means
	4.3 Additional Algorithms
	Summary
	Exercises
	Bibliography

	Chapter 5: Advanced Analytical Theory and Methods: Association Rules
	5.1 Overview
	5.2 Apriori Algorithm
	5.3 Evaluation of Candidate Rules
	5.4 Applications of Association Rules
	5.5 An Example: Transactions in a Grocery Store
	5.6 Validation and Testing
	5.7 Diagnostics
	Summary
	Exercises
	Bibliography

	Chapter 6: Advanced Analytical Theory and Methods: Regression
	6.1 Linear Regression
	6.2 Logistic Regression
	6.3 Reasons to Choose and Cautions
	6.4 Additional Regression Models
	Summary
	Exercises

	Chapter 7: Advanced Analytical Theory and Methods: Classification
	7.1 Decision Trees
	7.2 Naïve Bayes
	7.3 Diagnostics of Classifiers
	7.4 Additional Classification Methods
	Summary
	Exercises
	Bibliography

	Chapter 8: Advanced Analytical Theory and Methods: Time Series Analysis
	8.1 Overview of Time Series Analysis
	8.2 ARIMA Model
	8.3 Additional Methods
	Summary
	Exercises

	Chapter 9: Advanced Analytical Theory and Methods: Text Analysis
	9.1 Text Analysis Steps
	9.2 A Text Analysis Example
	9.3 Collecting Raw Text
	9.4 Representing Text
	9.5 Term Frequency—Inverse Document Frequency (TFIDF)
	9.6 Categorizing Documents by Topics
	9.7 Determining Sentiments
	9.8 Gaining Insights
	Summary
	Exercises
	Bibliography

	Chapter 10: Advanced Analytics—Technology and Tools: MapReduce and Hadoop
	10.1 Analytics for Unstructured Data
	10.2 The Hadoop Ecosystem
	10.3 NoSQL
	Summary
	Exercises
	Bibliography

	Chapter 11: Advanced Analytics—Technology and Tools: In-Database Analytics
	11.1 SQL Essentials
	11.2 In-Database Text Analysis
	11.3 Advanced SQL
	Summary
	Exercises
	Bibliography

	Chapter 12: The Endgame, or Putting It All Together
	12.1 Communicating and Operationalizing an Analytics Project
	12.2 Creating the Final Deliverables
	12.3 Data Visualization Basics
	Summary
	Exercises
	References and Further Reading
	Bibliography

	End User License Agreement

